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1.1 Euclidean Space

1.2 Definition

Let x , y , and z be the real-valued functions on R3 such that for each
point p = (p1, p2, p3)

x(p) = p1, y(p) = p2, z(p) = p3.

These functions are called the natural coordinate functions of R3.

(Note: Sometimes we write x1, x2, and x3 instead of x , y , and z .)
Any point p can be reconstituted from its images under the natural
coordinate functions.

p = (p1, p2, p3) = (x(p), y(p), z(p)) = (x1(p), x2(p), x3(p))
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1.1 Euclidean Space

1.3 Definition

A real-valued function f on R3 is of class C∞ provided all partial
derivatives of f , of all orders, exist and are continuous.

In analysis, the term differentiable usually means existence of a first order
derivative.
In this class, the default meaning of differentiable (or smooth) will be C∞.
In fact, the default meaning of function will be real-valued C∞ function.
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1.2 Tangent Vectors

2.1 Definition

A tangent vector vp to R3 consists of two points of R3: its vector part v
and its point of application p.

vp = wq iff (p = q and v = w)

2.2 Definition

Let p be a point of R3. The set Tp(R3) consisting of all tangent vectors
with point of application p is called the tangent space of R3 at p.

Tp(R3) is a vector space with addition and scaling defined by

vp + wp = (v + w)p, c(vp) = (cv)p.
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1.2 Tangent Vectors

Tangent vectors at different points live in different vector spaces.
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1.2 Tangent Vectors

2.3 Definition

A vector field on R3 is a function that assigns to each point p of R3 a
tangent vector V (p) to R3 at p.

In other words, a vector field is a selection of one vector from each tangent
space.
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1.2 Tangent Vectors

Suppose V and W are vector fields on R3.
Then at each point p ∈ R3, V (p) and W (p) are both elements of the
same tangent space, ...namely TpR3, ...and thus may be added to produce a
new tangent vector, ...also in TpR3.
So V and W can be added “pointwise” to produce a new vector field
V + W such that ...

(V + W )(p) = V (p) + W (p)

at each point p.

This is an example of the pointwise principle.
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1.2 Tangent Vectors

Pointwise principle

If an operation can be performed on the values of two functions at each
point, then that operation can be extended to the functions themselves:
simply apply it to their values at each point.

Vector field V can be scaled, pointwise, by scalar c , so that

(cV )(p) = c(V (p)) for all p.

But we can also do something more interesting and flexible than uniform
scaling. There’s no need to scale by the same factor at each point. In
other words, vector field V can be scaled by any real-valued function f on
R3, so that ...

(f V )(p) = f (p)V (p) for all p.
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1.2 Tangent Vectors

2.4 Definition: Natural frame field

Let U1, U2, and U3 be the vector fields on R3 such that

U1(p) = (1, 0, 0)p

U2(p) = (0, 1, 0)p

U3(p) = (0, 0, 1)p

for each point p of R3.

The ordered triple (U1,U2,U3) is called the natural frame field on R3.
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1.2 Tangent Vectors

The natural frame field on R3
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1.2 Tangent Vectors

2.5 Lemma

If V is a vector field on R3, there are three uniquely determined
real-valued functions, v1, v2, v3 on R3 such that

V = v1U1 + v2U2 + v3U3.

The functions v1, v2, v3 are called the Euclidean coordinate functions of V .

Proof

See text...or handout.
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1.3 Directional Derivatives

3.1 Definition

Let f be a differentiable real-valued function on R3, and let vp be a
tangent vector to R3. Then

vp[f ] =
d

dt
(f (p + tv))

∣∣∣
t=0

is called the derivative of f with respect to vp.

Notice that we do not require vp to be a unit vector.
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1.3 Directional Derivatives
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1.3 Directional Derivatives

3.2 Lemma

If vp = (v1, v2, v3)p is a tangent vector to R3, then

vp[f ] =
∑

vi
∂f

∂xi
(p).

Proof

vp[f ] = d
dt (f (p + tv))

∣∣∣
t=0

(definition)

=
∑ ∂f

∂xi
(p + tv) d

dt (pi + tvi )
∣∣∣
t=0

(chain rule)

=
∑ ∂f

∂xi
(p)vi ♦
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1.3 Directional Derivatives

3.3 Theorem

Let f and g be functions on R3, vp and wp tangent vectors, a and b
scalars. Then

(a vp + bwp)[f ] = a vp[f ] + bwp[f ], (1)

vp[a f + b g ] = a vp[f ] + b vp[g ], and (2)

vp[f g ] = vp[f ] g(p) + f (p) vp[g ]. (3)

Proof

See text.
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1.3 Directional Derivatives

Now suppose that V is a vector field on R3 and f is a real-valued function
on R3.
At any point p ∈ R3 we can use the tangent vector V (p) to compute a
directional derivative of f at p.
This directional derivative, V (p)[f ], has a numerical value.
So V [f ] defines a function on R3 in a natural way as follows.
For each p ∈ R3,

(V [f ])(p) = V (p)[f ].

In other words, a vector field specifies a family of directional derivative
operators – one for each point.
Operating on a function with a vector field produces a new function by
differentiating the first function, everywhere, in the directions determined
by the vector field.
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1.3 Directional Derivatives

Question

Why not define V [f ] by

(V [f ])(p) = V (p)[f (p)] ?
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1.3 Directional Derivatives

Example

(U1[f ])(p) =U1(p)[f ] (def. of vector field operating on fcn.)

= d
dt (f (p + tU1(p)))

∣∣∣
t=0

(def. of directional derivative)

= d
dt (f (p1 + t, p2, p3))

∣∣∣
t=0

(def. of U1)

= ∂f
∂x1

(p) (def. of partial derivative)

Since (U1[f ])(p) =
∂f

∂x1
(p) at all points p, we conclude U1[f ] =

∂f

∂x1
.

Similarly, U2[f ] =
∂f

∂x2
and U3[f ] =

∂f

∂x3
.

May 30, 2018 18 / 28



1.3 Directional Derivatives

3.4 Corollary

If V and W are vector fields on R3 and f , g , h are real-valued functions,
then

(1) (f V + g W )[h] = f V [h] + g W [h],

(2) V [a f + b g ] = a V [f ] + b V [g ], for all scalars a and b, and

(3) V [f g ] = V [f ] g + f V [g ].

Proof

Follows almost immediately from Theorem 3.3 and the pointwise principle.
See text.
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1.3 Directional Derivatives

3.4 Corollary

If V and W are vector fields on R3 and f , g , h are real-valued functions,
then

(1) (f V + g W )[h] = f V [h] + g W [h],

(2) V [a f + b g ] = a V [f ] + b V [g ], for all scalars a and b, and

(3) V [f g ] = V [f ] g + f V [g ].

Example

Given V = xy2U2 − 2xU3 and f = 3xz2 − y3z .

V [f ]
(2)
= 3V [xz2]− V [y3z ]

(1)
= 3(xy2U2[xz2]− 2xU3[xz2])− (xy2U2[y3z ]− 2xU3[y3z ])

= 3(xy2(0)− 2x(2xz))− (xy2(3y2z)− 2x(y3)) = −12x2z − 3xy4z + 2xy3.
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1.3 Directional Derivatives

3.5 Announcement

Henceforth, the point of application subscript will often by omitted from
the notation for tangent vectors.
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1.4 Curves in R3

4.1 Definition

A curve in R3 is a differentiable function α : I → R3 from an open interval
I into R3.

So by default “curve” means parameterized curve.
If α = (α1, α2, α3), then α1, α2, and α3 are called the Euclidean
coordinate functions of α.
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1.4 Curves in R3

Line α : R→ R3 with α(t) = p + tq, (p,q ∈ R3,q 6= 0)
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1.4 Curves in R3

Twisted cubic α : R→ R3 with α(t) = (t, t2, t3)
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1.4 Curves in R3

4.3 Definition

Let α : I → R3 be a curve in R3 with α = (α1, α2, α3). For each t ∈ I ,
the velocity vector of α at t is the tangent vector

α′(t) =

(
dα1

dt
(t),

dα2

dt
(t),

dα3

dt
(t)

)

α(t)

=
∑ dαi

dt
(t)Ui (α(t))

at the point α(t) in R3.
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1.4 Curves in R3
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1.4 Curves in R3

4.4 Definition

Let α : I → R3 be a curve. If h : J → I is a differentiable function on an
open interval J, then the composite function

β = α(h) : J → R3

is a curve called a reparameterization of α by h.

For each s ∈ J, the new curve β is at the point β(s) = α(h(s)) reached by
α at h(s) in I . So β travels the portion of the trace of α corresponding to
h(J) ⊂ I .
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1.4 Curves in R3
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1.4 Curves in R3

4.4 Definition

Let α : I → R3 be a curve. If h : J → I is a differentiable function on an
open interval J, then the composite function

β = α(h) : J → R3

is a curve called a reparameterization of α by h.

Example

α(t) = (sin t, cos t, 0), −π < t < π
h(s) = arcsin s, −1 < s < 1

β(s) = α(h(s)) = (s,
√

1− s2, 0), −1 < s < 1
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1.4 Curves in R3

4.5 Lemma

If β is the reparameterization of α by h, then

β′(s) =
dh

ds
(s)α′(h(s)).

Proof

Apply the chain rule.
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1.4 Curves in R3

4.6 Lemma

Let α be a curve in R3 and let f be a differentiable function on R3. Then

α′(t)[f ] =
d(f (α))

dt
(t).

Proof

Since α′ =

(
dα1

dt
,
dα2

dt
,
dα3

dt

)

α

, Lemma 3.2 yields

α′(t)[f ] =
∑ ∂f

∂xi
(α(t))

dαi

dt
(t).

But this is exactly the expression the chain rule produces for
d(f (α))

dt
(t).♦
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1.4 Curves in R3

4.6 Lemma

Let α be a curve in R3 and let f be a differentiable function on R3. Then

α′(t)[f ] =
d(f (α))

dt
(t).

Question

How should we interpret Lemma 4.6?
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1.4 Curves in R3

Definition

A curve α : R→ R3 is periodic if there exists a number p > 0 such that
α(t) = α(t + p) for all t. The smallest such p (if it exists) is called the
period of α.

Definition

A curve α is regular if α′ never has a zero vector part.
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1.4 Curves in R3

If f is a differentiable real-valued function on R2, let

C : f = a

be the set of all points p in R2 such that f (p) = a.

Claim

If the partial derivatives ∂f
∂x and ∂f

∂y are never simultaneously zero at any
point of C , then C consists of one or more separate “components,” each
of which corresponds to the “route” taken by (many) regular curves.

Definition

We call these components Curves (with a capital ‘C’).

Definition

A regular curve α whose route matches a Curve C is called a
parameterization of C .
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