Calc I Theorem

Suppose the derivative of a function $f : \mathbb{R} \to \mathbb{R}$ exists and is continuous in an open interval containing a, and, furthermore, $f'(a) \neq 0$. Then, there exists some open interval, say I, such that $a \in I$, f is invertible on I, the inverse function f^{-1} has a derivative which is continuous on f(I), and, furthermore,

$$(f^{-1})'(f(a)) = rac{1}{f'(a)}$$

Advanced Calculus Review / Primer

Inverse Function Theorem

Suppose $F = (f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable on an open set of \mathbb{R}^n containing point **p**. Suppose, furthermore, the Jacobian of F at **p**,

 $J_{F}(\mathbf{p}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{p}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{p}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(\mathbf{p}) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(\mathbf{p}) \end{bmatrix} \text{ has a non-zero determinant.}$

Then, there exists some open set, say U, containing **p**, such that F is invertible on U, the inverse function F^{-1} is continuously differentiable on F(U), and, furthermore,

$$J_{F^{-1}}(F(\mathbf{p})) = J_F(\mathbf{p})^{-1}$$

Proof See any advanced calculus text.

July 14, 2018 2 / 8

3

500

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

July 14, 2018 1 / 8

Example

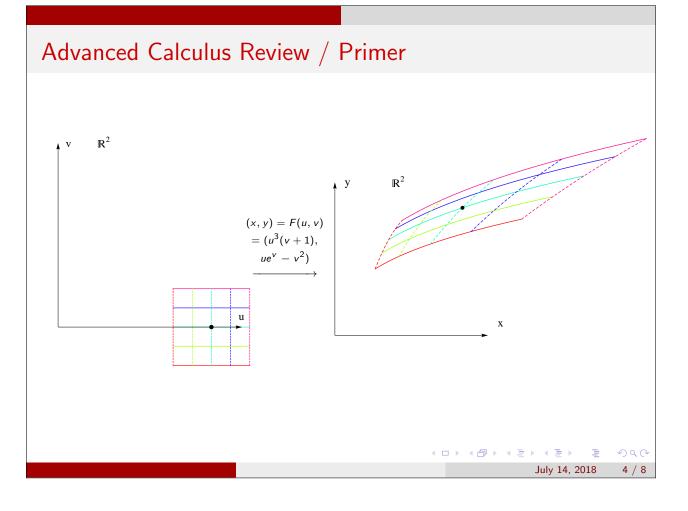
Let F be the map from \mathbb{R}^2 to \mathbb{R}^2 given by $F(u, v) = (u^3(v+1), ue^v - v^2)$, and let $\mathbf{p} = (1, 0)$.

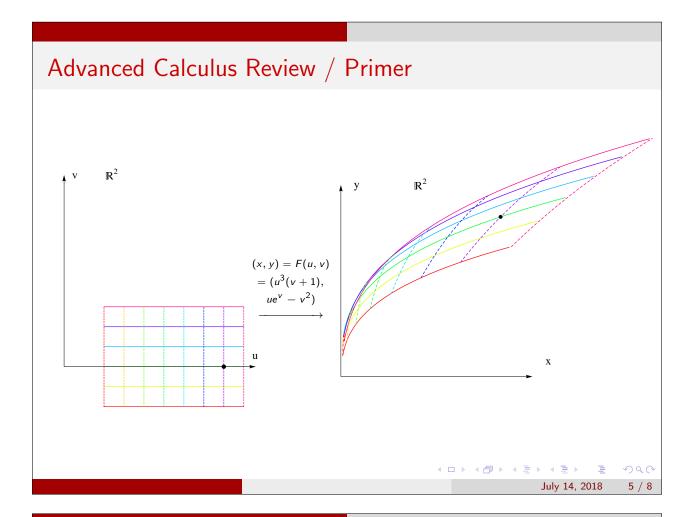
$$J_{F}(\mathbf{p}) = \begin{bmatrix} 3u^{2}(v+1) & u^{3} \\ e^{v} & ue^{v} - 2v \end{bmatrix} \Big|_{(1,0)} = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

July 14, 2018 3 / 8

Since $|J_F(\mathbf{p})| = 2 \neq 0$, F must be differentiably invertible in a neighborhood of \mathbf{p} .





Calc I Theorem

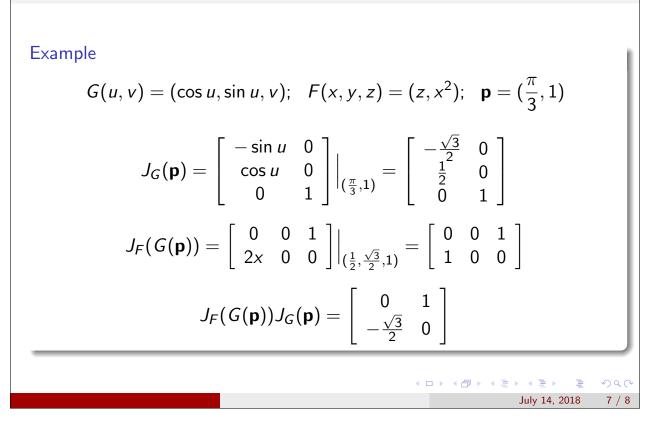
Suppose the derivative of $g : \mathbb{R} \to \mathbb{R}$ exists at *a*, and the derivative of $f : \mathbb{R} \to \mathbb{R}$ exists at g(a). Then the derivative of the composite function $f \circ g$ exists at *a* and

$$(f \circ g)'(a) = f'(g(a))g'(a).$$

Multidimensional generalization

Suppose $G : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{p} , and $F : \mathbb{R}^m \to \mathbb{R}^k$ is differentiable at $G(\mathbf{p})$. Then the derivative of the composite function $F \circ G$ exists at \mathbf{p} and

$$J_{F\circ G}(\mathbf{p}) = J_F(G(\mathbf{p}))J_G(\mathbf{p}).$$



Advanced Calculus Review / Primer

Example (continued)

$$G(u, v) = (\cos u, \sin u, v); \quad F(x, y, z) = (z, x^{2}); \quad \mathbf{p} = (\frac{\pi}{3}, 1)$$
$$(F \circ G)(u, v) = F(\cos u, \sin u, v) = (v, \cos^{2} u)$$
$$J_{(F \circ G)}(\mathbf{p}) = \begin{bmatrix} 0 & 1\\ 2\cos u(-\sin u) & 0 \end{bmatrix} \Big|_{(\frac{\pi}{3}, 1)} = \begin{bmatrix} 0 & 1\\ -\frac{\sqrt{3}}{2} & 0 \end{bmatrix}$$

So direct computation agrees with the chain rule computation. Of course.

《曰》《卽》《言》《言》

æ

July 14, 2018

590

8 / 8