CHALLENGE PROBLEMS

1．Detemine whether or not $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{32}+x^{5} y^{10}}{x^{30}+y^{12}}$ exists．
2．Define f on $[-1, \infty)$ by $f(x)=\left\{\begin{array}{ll}0, & x=0 \\ \frac{1}{\Gamma \frac{1}{x}}, & \text { otherwise }\end{array}\right.$ ．Determine the set of points D at which f is differentiable，and find f^{\prime} everywhere on D ．Justify your answer carefully．

3．Use MatLab（or other CAS of your choice）to write a function which randomly chooses a point on the unit sphere $\left(x^{2}+y^{2}+z^{2}=1\right)$ according to the probability distribution which is uniform with respect to surface area．In other words for any region R on the unit sphere（with a well－defined area），the probability that a point is chosen from R should equal $\frac{\operatorname{Area}(R)}{4 \pi}$ ．
4．Show that $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi^{2}}{4}$ ．

5．Let Q be the region of space above the x, y plane，below the plane $z=y$ ，and＂left＂of the parabolic cylinder $y=1-x^{2}$（i．e．points in Q satisfy $y<1-x^{2}$ ）．The boundary of Q breaks naturally into three pieces：a flat bottom，a flat top，and a curved side．Suppose you want to build a model using pieces cut from（bendable）card stock．Find equations for the boundary curves of the pieces（before bending）．

（Alternatively design two pieces，one which will need to be folded，the other bent．）
6．Let $f:[-1,1] \rightarrow \mathbb{R}$ be given by $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ ．Determine the radius of convergence of the Taylor series for f centered at $\frac{-1}{2}$ ．

7．Prove that $e^{\pi}>\pi^{e}$ ．
8．Define f by $f(x)=\frac{1}{1+x^{2}}$ ．Find a simple，closed form representation for $f^{(n)}(x)$ which is valid for $n=1,2,3, \ldots$ ．

9．Suppose $f \in C_{0}^{1}\left(\mathbb{R}^{+}\right)$and $\delta \in[0,1)$ ．Prove that

$$
\int_{0}^{\infty}(f(t))^{2} t^{-\delta} d t \leq \frac{4}{(1-\delta)^{2}} \int_{0}^{\infty}\left(f^{\prime}(t)\right)^{2} t^{2-\delta} d t
$$

（A function $f:[0, \infty) \rightarrow \mathbb{R}$ is in $C_{0}^{1}\left(\mathbb{R}^{+}\right)$if（1）there exist a, b such that $0<a<b$ and $f(x)=0$ for all x not in $[a, b]$ ，and（2）f^{\prime} exists and is continuous on（ $0, \infty$ ）．）Thanks to Yueyue for contributing this problem from USTC（中科大）．
10. Determine how many rectangles can be formed from the squares of a standard 8×8 chessboard. Generalize to an $n \mathrm{x} n$ board. Thanks to Hetian for contributing this problem.
11. Derive an exact expression for the angle between any two vectors which represent displacements from the center of a regular tetrahedron to two distinct vertices.
12. Prove $\pi \neq \frac{355}{113}$.

