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Part 1: Preparation

Introduction:
This activity will guide you through a graphical exploration of the method of
Lagrange multipliers for solving constrained optimization problems. The cen-
tral ideas will be illustrated with an example similar to the following exercise.

(*) Find the maximum value of

f(x, y, z) = x + y − z

3
subject to the pair of constraints{

x + 2y + 3z = 2

x2 + y2 + z2 = 1
.

The preparatory questions below are to be completed prior to the in-class
portion of the activity.

Preparatory questions:

(1) Describe the family of level surfaces of the objective function f .

(2) Does the objective function f obtain a maximum value in xyz-space? Give
an explanation which relates your answer to the family of level surfaces of f .

(3) Describe some subsets of xyz-space on which f does attain a maximum
value. (Try to produce a variety of examples with qualitative differences.)

(4) Describe some subsets of xyz-space on which f does not attain a max-
imum value. (Again try to produce a variety of examples with qualitative
differences.)

(5) Suppose r(t) = (x(t), y(t), z(t)), a < t < b is a regular parameterization of
a space curve. Use the chain rule to determine the rate of change of f (with
respect to t) as f is evaluated along the curve. (In other words, compute
d
dt (f(r(t))).) Express your answer explicitly in terms of the gradient of f and
the velocity of r.



(6) From the origin, in which direction should you go to increase the value of
f as rapidly as possible? Explain.

(7) Describe the set of all directions in which one can move from the origin
so that f will increase. Explain. (Feel free to discuss the subtleties of slightly
different interpretations of this exercise with your instructor.)

(8) In questions (6) and (7), if the origin is replaced by an arbitrary space
point P do the answers change?

(9) Describe the solution set of the first constraint equation x + 2y + 3z = 2
from sample problem (*) above.

(10) Describe the solution set of the second constraint equation x2+y2+z2 = 1.

(11) In general what types of sets can occur as the intersection of a plane and
a sphere? Comment on the problem of optimizing a continuous function in
each case.
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Part 2: Graphical Exploration / CAS Computation

Prerequisites: (Essential) Understanding of level surfaces, gradients, and
directional derivatives. (Desirable) Experience optimizing a function of two
variables subject to a constraint condition satisfied by a curve in the function’s
domain.
Resource URL: Temporary

http://faculty.cooper.edu/smyth/threejs/calculus/lagrangeMultipliers.htm

Introduction:
This activity will guide you through a graphical exploration of the method of
Lagrange multipliers for solving constrained optimization problems. The cen-
tral ideas will be illustrated with an example similar to the following exercise.

(*) Find the maximum value of

f(x, y, z) = x+ y − z

3
subject to the pair of constraints{

x+ 2y + 3z = 2
x2 + y2 + z2 = 1

.

Guide / discussion questions:

(1) Open the webpage at the URL given above. Expand the Choose objects
folder from the control panel in the upper right hand corner. Select the Con-
straint 1 (plane) and Constraint 2 (sphere) checkboxes to add the solutions of
the constraint equations to the main canvas. The graphic can be repositioned
and reoriented using either a mouse (or touchscreen), or the Rotational con-
trols. In this example, which type of intersection is formed by the plane and
sphere?

(2) Select Constraint curve to add the circle of points simultaneously satisfying
both constraint conditions to the graphic. How could you have determined
that x + 2y + 3z = 2 and x2 + y2 + z2 = 1 intersect in a circle (rather than



just a single point, or the empty set) without using a computer?

(3) Select Test point to add a distinguished point to the constraint circle. You
can move this marked point to any position on the constraint circle using the
Test point controls. At any given fixed position on the constraint curve, how
many directions are possible for motion which does not leave the constraint
curve? (More precisely, suppose γ : (a, b) → R3 is a regular parameterization
for some portion of the constraint curve including point P , and t0 ∈ (a, b) is
a parameter value such that γ(t0) = P . How many possible directions could
the velocity vector γ′(t0) have?)

(4) Select the two Tangent to constraint checkboxes to add visual represen-
tations of the two “constraint sensitive” directions at the marked test point.
What information about the objective function (the function we want to max-
imize subject to the constraints) would facilitate a determination of whether it
will increase or decrease as the test point is moved along the constraint curve?

(5) Select Objective function gradient. What can you say about the directional
derivative of f at a point P in a direction which makes an acute angle with
∇f(P )? What can you say about how f(P ) will change as long as the direction
in which P is moved continues to form an acute angle with ∇f(P )?

(6) Select Objective function monitor. Using the Test point controls move the test
point (point “P”) around the constraint circle. View the left pane graphical
representation of how the objective function values change (and/or the textual
display on the left side of the top banner) to confirm your answers above. State
a relationship between ∇f(P ) and the tangent line to the constraint curve at
P that precludes the possibility of f attaining an extreme value at P subject
to the constraints. Recast your observation as a necessary condition for f to
attain an extreme value at P (subject to the constraints). Is this condition,
in general, a sufficient condition?

(7) Define g(x, y, z) = x + 2y + 3z − 2 and h(x, y, z) = x2 + y2 + z2 − 1 so
that the constraint conditions can be written as g = 0, h = 0. In particular,
the constraint surfaces are level surfaces of the functions g and h. Given P on
the intersection of the two constraint surfaces, what’s the relationship between
∇g(P ) and the constraint plane, and what’s the relationship between ∇h(P )



and the constraint sphere?

(8) If f attains an extreme value subject to the constraints g = 0, h = 0 at
point P , must ∇f(P ) be parallel to ∇g(P ) and/or ∇h(P )?

(9) Select Normal to plane, Normal to sphere, and Span of constraint normals.
Recast your necessary condition for f to attain a constrained extreme value at
P (from step (6)) as a requirement on ∇f(P ) in terms of ∇g(P ) and ∇h(P ).
Formulate this condition in both geometric and linear algebraic terms.

(10) Record the coordinates (as precisely as you can) for the point where f
achieves its maximum subject to the constraints. What is the constrained
maximum value of f?

(11) Select Obj fcn level surf’s to display a few select level surfaces of the
objective function f . What relationship holds between level surfaces of f and
points where constrained extreme values of f occur in this example? (For
this step you’re advised to unselect objects to reduce clutter, and unselect the
Perspective camera to switch to an orthographic view.) Can you generalize this
relationship? (Beware. This is a bit tricky.)

CAS Symbolic Computation

(1) Open MATLAB and prime the Symbolic Toolbox with a symbol declara-
tion.

>> syms x y z lambda mu

(2) Define the objective function, and the functions appearing in the constraint
equations.

>> f = x + y - z/3

>> g = x + 2*y + 3*z - 2

>> h = x^2 + y^2 + z^2 - 1

(3) Define the Lagrangian for our example problem.

>> lagrangian = f - lambda*g - mu*h



(4) Encode the necessary condition for constrained extrema as a single vector
equation. (Don’t confuse the double equal sign == [equality] with the single
equal sign = [assignment].)

>> eqn = ( gradient(lagrangian, [x y z lambda mu]) == [0; 0; 0; 0; 0] )

(5) Solve the system.

>> candidates = solve( eqn, [x y z lambda mu] )

(6) Extract the spacial coordinates from the solutions (and peek at numerical
approximations).

>> [ candidates.x candidates.y candidates.z ]

>> vpa( ans )

(7) Evaluate f at the candidate points.

>> subs( f, [x y z], [candidates.x(1) candidates.y(1) candidates.z(1)] )

>> vpa( ans )

>> subs( f, [x y z], [candidates.x(2) candidates.y(2) candidates.z(2)] )

>> vpa( ans )

(8) Where is the constrained maximum of f achieved and what is its value?
(Is your answer here consistent with your answer to question (10) above?)
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Part 3: Analytical solution

(*) Find the maximum value of

f(x, y, z) = x + y − z

3
subject to the pair of constraints{

x + 2y + 3z = 2

x2 + y2 + z2 = 1
.

(1) Solve the constrained optimization problem (*) with paper and pencil
using the method of Lagrange multipliers. Organize your work as a clear,
linear presentation with explanatory notes for each step.

(2) What if the constraint in (*) is revised to allow all points of the plane
x + 2y + 3z = 2 on or inside the sphere x2 + y2 + z2 = 1?

(3) What if the planar constraint is dropped? Can you then solve the problem
without calculus?

(4) Re-solve (*) without Lagrange multipliers by finding an explicit parame-
terization for the constraint curve.

(5) Which of the two solution methods for (*) (Lagrange multipliers vs. explicit
parameterization of the constraint curve) do you think is more flexible in
general? Why?

(6) Find the maximum and minimum values of 2x2 + 2y − z subject to the
constraints z = 2x2 + 2y2 and 4y2 + z2 = 4.

(7) Can you identify any feature(s) of optimization problem (6) not in evidence
in (*)?


