
CS102: Selection Statements

A Boolean expression is an expression that is either true or false. (Related to this, logical

data is data that has the value of true or false.) Standard C does not have a Boolean data

type. However, it does use Boolean expressions. If an expression is true, it is given the

value of 1. If an expression is false, it is given the value of 0. Similarly, if a numeric

expression is used as a Boolean expression, any non-zero value will be considered true,

while a zero value will be considered false.

One of the most important statements in C is the "if" statement. Here is the general

format:

if (expression)

 statement;

In this case, the statement within the "if" statement will only be executed if the

expression is true.

Here are a few very simple programs using an "if" statement:

Program #1:

#include <stdio.h>

int main(void)

{

 if (1)

 printf("Hello World!\n");

 return 0;

}

Program #2:

#include <stdio.h>

int main(void)

{

 if (-55)

 printf("Hello World!\n");

 return 0;

}

Program 3:

#include <stdio.h>

int main(void)

{

 if (0)

 printf("Hello World!\n");

 return 0;

}

The first two programs above will print "Hello World!" to the screen, since non-zero

values are considered true. The third program will do nothing, since a zero value is

considered false.

Here are two more examples, with more sensible (but still pretty useless) Boolean

expressions:

Program 4:

#include <stdio.h>

int main(void)

{

 if (7 > 5)

 printf("Hello World!\n");

 return 0;

}

Program 5:

#include <stdio.h>

int main(void)

{

 if (5 > 7)

 printf("Hello World!\n");

 return 0;

}

The first of these two programs will print "Hello World!" to the screen, since the

expression is true, but the second will not.

Not that there is no semicolon after the right parenthesis following the Boolean

expression; if there were, then the semicolon would represent the end of a statement, and

we would be saying "if an expression is true, do nothing".

In order to show some semi-useful examples of the "if" statement, we’re going to

introduce another function from the "stdio" library (the same library that contains

"printf") called "scanf". The "scanf" function can be used to have the user enter a value

for a variable. You will not understand how this works until much later.

#include <stdio.h>

int main(void)

{

 int x;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if (x > 10)

 printf("Hello World!\n");

 return 0;

}

This program allows the user to type a number and will print "Hello World!" if and only

if that number is greater than 10.

There are a few things to note here.

1) Notice there is no '\n' at the end of the string in the first printf statement. Therefore,

the user will be entering the number on the same line that the string is printed. Of

course, you could include a '\n' if you want; it's just a matter of taste.

2) VERY IMPORTANT: Notice the '&' to the left of the variable "x" in the call to

"scanf". What follows is a brief explanation of why this is there, but you won't really

understand it until you have learned about pointers and function calls. Normally,

when you pass a variable to a function, the value of the variable is copied to another

location in memory, and this copy is used by the function. Because of this, it is

impossible for functions to change the value of the variable that was passed. The '&'

sign (called the "address-of" operator) tells the computer that we are NOT passing the

value of "x", but rather the memory address of "x" (the location in memory where the

value of "x" is stored). The function "scanf" can write a new value into this memory

location, and therefore produce the effect of changing the value of "x". It is a very

common error to forget to include the '&' sign to the left of a variable passed to

"scanf". Sometimes, it is a hard error to catch for beginner programmers. The value of

the variable won’t be changed, and "scanf" may wind up writing to some random

location in memory, which could have weird effects.

3) The function "scanf" sometimes has unpredictable behavior when the user does not

enter what he or she is supposed to. For instance, with the above program, if the user

enters a string instead of an integer, the value of "x" will be unpredictable.

The '>' is an example of a relational operator. A relational operator takes two operands

and compares them to each other, resulting in a value of true (1) or false (0). The '>' is

just one relational operator provided by C. There are six relational operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal

!= not equal

Here is an example of the use of the equal operator:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if (x == 10)

 printf("Hello World!\n");

 return 0;

}

You can probably guess that this program prints "Hello World!" to the screen if and only

if the integer entered by the user is 10.

Note that there are TWO '=' characters in a row. It is a very common error to use just one.

This type of error is often very hard to catch! The problem is that with just one '=' sign,

the program would still be valid. An assignment statement is also given the value that is

assigned to the variable. So:

if (x = 10)

 statement

will always assign the value of 10 to "x" and then result in the inner statement being

executed (since 10 evaluates to true)!

if (x = 0)

 statement

will always assign the value of 0 to "x" and the inner statement will not be executed

(since 0 evaluates to false)!

It may look like x is being compared to 10 or 0 because of the "if" statement, but this is

not the case.

Always remember to use "==" for comparisons in an "if" statement or other Boolean

expressions.

We’ve listed the relational operators above. C also has three logical operators:

! not

&& Logical and

|| Logical or

Consider this program:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if ((x >= 10) && (x <= 20))

 printf("Hello World!\n");

 return 0;

}

This program prints "Hello World!" to the screen if and only if the integer entered by the

user is greater than or equal to 10 and less than or equal to 20.

Now consider:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if ((x < 10) || (x > 20))

 printf("Hello World!\n");

 return 0;

}

This program prints "Hello World!" to the screen if and only if the integer entered by the

use if less than 10 or greater than 20.

It is possible to have multiple statements executed when the expression checked by an

"if" statement is true. Here is an example:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if (x > 10)

 {

 printf("The number you entered is greater than 10.\n");

 printf("%d is still a positive number.\n", x-10);

 }

 return 0;

}

This program has the user enter a number. If and only if the number is greater than 10,

the program will inform the user that the number is greater than 10, and also that the

number minus 10 is still positive. One thing to notice here is that the value being passed

to "printf" is the outcome of an expression, which is perfectly valid. The expression is

evaluated and only the result is sent to the function.

A collection of zero or more statements inside of left and right curly braces is known as a

compound statement, or a block. A compound statement can be used anyplace that a

single statement can be used!

There are several common statements that, like the "if" statement, make compound

statements useful, but you could place one anywhere that you can place a single

statement. Here is a silly example:

#include <stdio.h>

int main(void)

{

 int x, y, z;

 x = 10;

 y = 100;

 z = 1000;

 {

 printf("The value of x is %d.\n", x);

 printf("The value of y is %d.\n", y);

 printf("The value of z is %d.\n", z);

 }

}

You can probably guess what this program prints to the screen, but you may be asking,

"What is the use of having a compound statement in the middle of this function?". The

answer is, there is no use! You might as well just have three single statements here. The

compound statement is confusing, and this is sloppy code, but it is valid and it works.

The example is only being shown to explain that a compound statement can be used

anywhere that a single statement can be used. Remember back to the generic example of

the "if" statement:

if (expression)

 statement;

Because C was designed in such a way that compound statements can always replace

single statements, an "if" statement can automatically accept a compound statement to

execute when the expression is true!

Every function (including "main") has a function body that is a compound statement.

Every compound statement can optionally include local declarations after the opening

curly brace!

Here is an example that also introduces a new library:

#include <stdio.h>

#include <math.h>

int main(void)

{

 float x;

 printf("Please enter a positive number: ");

 scanf("%f", &x);

 if (x > 0)

 {

 float y;

 y = sqrt(x);

 printf("The square root of %f is approximately %f.\n",

x, y);

 }

 return 0;

}

One of the things we’re doing here is introducing a new library, the math library. Like the

standard input/output library which provides the function "printf", the math library

includes functions which are often useful, including the function "sqrt" which takes a

floating point number as input and returns a floating point number as output. In order to

use the math library, the compiler has to link it with your source code.

Here things get a little confusing! There are some provided libraries that the compiler will

link with automatically. The "stdio" library is one of those libraries. There are other

libraries that you have to tell the compiler to link with explicitly! The math library is one

of these libraries (although some compilers might also link to it automatically). In order

to force the compiler to link with the math library, you have to use the "-l" parameter

followed by the letter "m" (with no space in between) when you call the compiler. For

example, suppose the above code is stored in a file called "sqrt.c", and you want the

executable file to be named "sqrt". Then you can compile by typing:

gcc –o sqrt sqrt.c –lm

After you compile, of course, you can run the executable program by typing "./sqrt" at the

Linux command prompt.

More specifically, when the parameter "–l<name>" is used with the compiler, the

compiler looks for a file named "lib<NAME>.a" in a specific directory. The name of the

math library is "libm.a".

You may be wondering why you have to have the "#include <math.h>" line at the top of

the program if you are going to tell the compiler to link with the library using "-lm"

anyway. You’ll be able to understand this better after learning about functions. The quick

answer is that in order to call a function whose code does not appear above the line that

calls it, you need to have a function prototype statement above the code that calls it. The

"#include" directives are actually including these prototype statements for functions in

the appropriate libraries.

Now look back at the code. We’re using "scanf" to have the user enter a floating point

number. Like with "printf", the "%f" symbol is used to represent a float.

We then use an "if" statement to ensure the number is positive, since we can’t take the

square root of a negative number. If we try, we would get a run-time error! This might

cause the program to crash, or it might cause the function to return a weird value.

If the number the user enters is positive, we fall in to the compound statement guarded by

the "if" statement. At the start of this compound statement, we declare a local floating

point variable "y". We set the value of "y" to the value of the square root of "x" and print

it out.

Now we could have declared "y" at the top of the function main along with "x" (either as

part of the same declaration or with a separate declaration). Either way would be valid,

but the convention for standard C is to declare all the variables used in a function at the

beginning of the function. (This is not true of other languages, including C++, and

ultimately, it is a matter of preference.) Some standard C programmers consider this

program to have bad style, but it is being shown here to demonstrate that local variables

can be declared at the start of any compound statement.

This brings us to another important definition: The scope of a variable is the portion of a

program in which you can use that variable. Some people prefer to say that the scope of a

variable is the region of the program in which the variable is visible.

When you declare a local variable at the beginning of a block, the scope of that variable

is that block. If you try to use the variable outside of the block, you will get a compiler

error. If you declare a variable at the beginning of a function, you can use the variable

anywhere in that function. In the example above, the variable "y" could only be used

inside the compound statement which is guarded by the "if".

You will learn more about scope when you learn about functions.

Sometimes, you want to execute certain code if a certain condition is true, and do

something else otherwise. For this, C provides the "if…else" statement. The general

format is:

if (expression)

 statement1;

else

 statement2;

As you might guess, statement1 is only executed if the expression in parentheses is true,

and statement2 is executed otherwise.

Here is an example:

#include <stdio.h>

int main(void)

{

 int x, y;

 printf("Please enter an integer: ");

 scanf("%d", &x);

 if (x >= 0)

 y = x;

 else

 y = -x;

 printf("The absolute value of %d is %d.\n", x, y);

 return 0;

}

You can probably figure out what this does.

Of course, the statements after the "if" or "else" clauses could be compound statements.

The following is a valid statement (assume "y", "z", "count1", "count2", and "diff" are int

variables):

if (y > z)

{

 count1 = count1 + 1;

 diff = y – z;

}

else

{

 count2 = count2 + 1;

 diff = z – y;

}

This might be part of some program storing the number of times that "y" is greater than

"z" in "count1" and the number of times that "z" is greater than "y" in "count2", and also

doing something with the difference.

The statements within the "if" or "else" clauses might themselves be "if" or "if…else"

statements! If so, the inner "if" or "if…else" statement is said to be nested. For example:

if (y > 10)

 if (z < 5)

 x = 10;

 else

 x = 5;

else

 x = 99;

Here’s a case of code that could be confusing:

if (x > 10)

 if (x < 20)

 printf("The value of x is between 10 and 20.\n");

else

 printf("What do we know about x?");

The problem about this code is that it is indented badly. It appears that the "else" clause

matches the first "if" clause and that the second message would only get printed if "x" is

less than or equal to 10. However, in actuality, an "else" clause is always matched with

the most recent available "if" clause. (Remember, C ignores indentation and other white

space.) So the second message is printed if "x" is greater than 10 and greater than or

equal to 20 (i.e., simply greater than or equal to 20). The code should be formatted as

follows to avoid confusion:

if (x > 10)

 if (x < 20)

 printf("The value of x is between 10 and 20.\n");

 else

 printf("What do we know about x?");

If you wanted the behavior of the code to be what the first of these two examples appears

to be doing, you can force this behavior with appropriate curly braces as follows:

if (x > 10)

{

 if (x < 20)

 printf("The value of x is between 10 and 20.\n");

}

else

 printf("What do we know about x?");

Now, the else clause must match the first "if" clause, since the second "if" statement is

within its own compound statement, ended by the right curly brace. (Note: It is perfectly

valid to have a compound statement with just one statement. In fact, you can have an

empty compound statement, represented "{}", but this won’t serve any purpose.)

Now, we are going to look at the else-if statement, used when there are more than just

two possible states that we want to distinguish. Here is an example:

#include <stdio.h>

int main(void)

{

 int x, y;

 printf("Please enter a positive integer: ");

 scanf("%d", &x);

 if (x <= 0)

 printf("That number is not positive!\n");

 else if (x < 10)

 printf("That number has one digit.\n");

 else if (x < 100)

 printf("That number has two digits.\n");

 else if (x < 1000)

 printf("That number has three digits.\n");

 else

 printf("That number has four or more digits.\n");

 return 0;

}

It should be pretty obvious what this program is doing. We only get to a particular case if

all the ones before it were not true. The final "else" clause takes care of everything that

has not fallen in to one of the other cases. This program will print out only one message.

The "if" statement is an example of a selection statement because the program selects

one path to follow depending on certain conditions. A simple "if" statement follows the

"if" clause if an expression is true and skips it otherwise. An "if…else" statement and

those with "else-if" clauses are more complex.

Another selection statement in C is the "switch" statement. Here is an example:

#include <stdio.h>

int main(void)

{

 char c;

 printf("Enter a character: ");

 scanf("%c", &c);

 switch(c)

 {

 case 'a': case 'A':

 case 'e': case 'E':

 case 'i': case 'I':

 case 'o': case 'O':

 case 'u': case 'U':

 printf("%c is always a vowel!\n", c);

 break;

 case 'y': case 'Y':

 printf("%c is sometimes a vowel!\n", c);

 break;

 default:

 printf("%c is never a vowel!\n", c);

 break;

 }

 return 0;

}

The beginning of this program should be clear; the program has the user enter a character.

The expression inside the parenthesis after the "switch" is an expression. It doesn’t have

to be a single variable. Whatever it is, the expression is evaluated. In this case, the value

of the expression is just the value of the variable.

A "switch" statement is followed by a series of "case" statements inside curly braces. If

the value of the evaluated expression matches the value being checked by a "case"

statement, the code following that "case" statement (or set of "case" statements) is

executed. There can be one statement or multiple statements following each case. If there

are multiple statements, you do not need to make them a compound statement, but you

can if you want to.

When the computer reaches a "break" statement, it skips to the end of the "switch"

statement. In other words, the computer jumps to the statement following the right curly

brace that ends the switch statement. The "break" statement has different meanings

depending on how it is used; This is how it is used with a "switch" statement, but you

will see other uses of it later.

If there is no "break" statement at the end of a series of statements, the execution will

continue with the next set of statements. For instance, if the first "break" statement in the

above code was omitted, and the user typed a vowel, the program would first display the

"…always a vowel!" message and then display the "…sometimes a vowel!" message.

When the next "break" was encountered, the switch statement would end.

If no "case" statement is matched, and there is a "default" statement in the switch

statement, the code following it is executed. The "default" statement is optional; without

it, if no case is matched, the switch statement is skipped.

The expression following each "case" statement must be a constant expression; i.e., it

cannot contain variables. No two "case" statements can be checking for the same value or

you will get a compiler error.

The spacing and indentation of the "switch" and "case" statements are, of course, left for

the programmer to decide. If you have multiple "case" statements together, they could all

be on one line, all be on separate lines, or mixed like in the example above. Whatever you

think is clear and readable.

The "switch" statement is not very commonly used. It can always be replaced with a

series of else-if statements. You can only use "switch" and "case" statements if you are

checking an expression against a finite amount of constant, integral or character values!

Even when you can use "switch" efficiently, it is just a matter of personal preference

whether you decide to do it this way of with else-if statements. Sometimes, as in the

example above, a "switch" statement is probably more readable, as otherwise you would

probably need to use very long expressions.

