
CS102: Introduction to Computer Science 

Summer 2013 

Program #4 

 

You are going to expand the program discussed in class that reads student records from a 

specified text file, computes final averages, and output the calculated averages to another 

specified text file. You will add the following functionality: 

 

1. You will add a field to the "student" structure; this will be a "char" that records the student's 

letter grade ('A', 'B', 'C', 'D', or 'F'). 10 Correctness points 

 

2. The compute_averages function will be expanded as follows: 

a. The user will be asked to enter a decimal fraction between 0 and 1 indicating the 

percentage of the final average determined by the test score (the last value in each 

row of the input file). The rest of the grade is determined by the homework scores, 

with each homework score weighted equally. 10 Correctness points 

b. After the final average is computed, the appropriate letter grade will also be recorded 

in the student's record. The cutoffs for A, B, C, and D are 90.0, 80.0, 70.0, and 60.0 

respectively; any final average lower than 60 gets an F. 10 Correctness points 

 

3. The sort_students function will ask the user if student records should be sorted according to 

names or final averages. If the latter, the records should be sorted from the highest average to 

the lowest average. (Alternatively, if you find it simpler, your program can include two 

separate sort functions for the two cases. In this case, you can prompt the user for instructions 

on how to sort in "main" and then call the appropriate function.) 10 Correctness points 

 

4. The display_students function will be expanded as follows: 

a. Each student's letter grade will be written to the output file after their final average 

(separated by a space). 10 Correctness points 

b. At the end of the file, messages will indicate counts of each letter grade. A blank line 

should be written before these messages. The counts should be computed as the file is 

written. (You can do this elegantly with a small array of integers to store counts and 

very few lines of code.) 10 Correctness points 

 

5. Your input_students function will not assume that there are four homeworks per student. The 

first line of the input file will include two integers separated by a space. The first integer will 

still indicate the number of student records that follow. The second integer will indicate the 

number of homeworks per student. (Note: I consider this conceptually to be the most difficult 

feature to add, although I only had to add or change about ten lines of code to make this 

work. I will discuss hints in class. If you can't get this part to work, just leave it out, and you 

can still achieve up to a 90 on the assignment. I'll have a version of my test file with the 

second integer left out, and I should be able to change the constant NUM_HW in your code 

to test your program with the test file.) 10 Correctness points 

 

I will provide a single sample input file and two sample output files created using two different 

sets of input from the user, as will be explained in class. Your program should output EXACTLY 

the same thing as mine, assuming that I use the same input file and I enter the same input. 

Messages in the output file should be phrased the same way as mine, the same formatting should 

be applied, etc. 



CS102: Introduction to Computer Science 

Summer 2013 

Program #4 

 

Your homework will be graded out of 100 points with the following breakdown: 

 Correctness: You should follow all instructions exactly as stated above. I will compute your 

total Correctness score according to the breakdown indicated on the first page of this 

document. This is an individual assignment (i.e., you should not collaborate with anyone 

else). 70 points. 

 Elegance and Efficiency: You should use the concepts we have learned in class to write 

your code in a simple, elegant manner. Avoid unnecessary processing. Do not use sets of 

separate variables when you can use a simple array. Avoid repeated code. 15 points. 

 Format: Your program should use proper indentation and other spacing which makes the 

code readable and easy to understand. 10 points. 

 Comments: Edit the comment at the top of the program explaining what the updated 

program does, and also include your name. Edit comments above each function, if 

appropriate. Add or edit comments within functions as appropriate. 5 points. 

 

Submitting assignments: Email me your code (to CarlSable.Cooper@gmail.com) as an 

attachment. Do NOT attach the executable (only send the source file). Please state in your e-mail 

which environment you used to develop the code (e.g., Cygwin, Quincy, Ubuntu, etc.). This 

program is due the night of Wednesday, August 7, before midnight. 


