
CS102: Introduction to Python

The goal of this topic is to provide a brief introduction to Python to give you a feel for a

language other than C. In many ways, Python is very different from C. It is generally considered

to be a scripting language, although the distinction between scripting languages and other

programming languages is not really clear-cut. Scripting languages tend to be interpreted rather

than compiled; they tend not to require declarations of variables (the interpreter just figures it

out); they tend to hide memory management from the programmer; they tend to support regular

expressions; etc. In terms of usage, scripting languages tend to be useful for writing short

programs quickly when you don't care too much about efficiency. Other languages that are

typically considered to be scripting languages include Perl, Awk, and JavaScript.

Python supports several styles of programming, including (but not limited to) procedural

programming (like C and C++), object-oriented programming (like C++ and Java), and

functional programming (like Lisp). Note that it is not a mistake to include C++ in two

categories, just as it is not a mistake to include Python in all three of these categories. The first

version of Python was released in the late 1980s. Python 2.0 was released in 2000, and various

improvements have been made in the Python 2.x chain of releases since that time. Python 3.0

was released in 2008, and again, various improvements have been made in the Python 3.0 chain

of releases. Unfortunately, Python 3 is not backwards compatible with Python 2, and there seems

to be debate as to which is the better version of Python to learn. On the one hand, in the future,

Python 2 might become deprecated, and you might have to learn Python 3 to program in Python

eventually. On the other hand, most of the available Python code on-line seems to use Python 2,

there are some important libraries that have not yet been ported to Python 3, and some

environments including Linux and Cygwin come with Python 2. All things considered, we will

be exploring Python 2 (at the time this is written, the latest version is Python 2.7, and that is the

version that seems to come installed with Cygwin and Ubuntu). We are also only considering

procedural programming in Python, the goal being to get a general feel for how the language

works. Interested students are encouraged to explore the language further on their own.

Let's look at our first Python program (sometimes called a script). As is customary, we will start

with a simple program to display "Hello World!" to standard output on its own line. Here it is:

print "Hello World!"

That's it. The string itself can be surrounded by either double quotes or single quotes. (I would

say that another common property of scripting languages is that there tends to be more

flexibility, giving you multiple ways to do exactly the same thing. This is a good thing if you

want to choose your own style, but it can also be bad because there is less consistency between

code samples.) To avoid an automatic newline character after the printed string, you could place

a comma after the ending quote, although this would still add a space at the end of the string.

Let's say you have used a text editor to create a file containing this program and named it

"hello.py" (where ".py" is the common extension for a Python script). To run the program from a

command line, you would just type "python hello.py", and assuming that Python is available, the

program will run.

If you are coming from a background in which you have only used compiled languages such as

C, this might seem strange. After all, we have learned that you can only run an executable that

has been compiled to (or written in) the machine code recognized by the current environment.

That is still true. The executable that you are running here is called "python". This type of

executable is an interpreter (in this case, it is an interpreter for the Python language). If you

want to know where the executable is stored on your system, in Linux/Unix/Cygwin you can

type "which python" and it will tell you. In order for the system to find the interpreter in must be

on your path. The path is a special environment variable (named "PATH") that tells the system

where to look for executable files in order to run them. In Cygwin or Linux, for example, you

can view the path and other environment variables by typing "printenv". If you only want to

view the PATH variable, you can type "printenv | grep PATH". Here, "grep" is a separate

Linux/Cygwin command to print all lines from the input that contain the specified pattern. (You

can look for much more complex patterns using "grep", but we will not cover that.) The vertical

bar, '|', designates a pipe that redirects the standard output of the command that is left of the pipe

to the standard input of the command that is right of the pipe. There are also ways to set the path

for different environments, but we will not cover that.

In the example above, you are running the Python interpreter, which in turn inspects and

executes the commands specified in "hello.py", which is just a text file containing your Python

code. Note that there is no equivalent to the "main function in a C program. Python, by default,

just starts interpreting commands from top to bottom.

One more thing; if you are using Python 3, this simple program would not work! The "print"

statement was removed from the language and replaced by a "print" function, so you need

parentheses around the string. (I will not be pointing out differences in Python 3 in general, but I

just wanted to give an example of something very basic that changed, and to remind students that

Python 3 is not backwards compatible with Python 2.)

One other thing to point out is that, while there are integrated development environments (IDEs)

that can be used to program with Python (e.g., Eclipse can be used with an appropriate plugin), it

seems to me that it is more common to use a text editor and to run the interpreter from the

command line. I am not exactly sure why, but this seems to be another common property of

scripting languages. Alternatively, you can use Python in interactive mode by just typing

"python" from the command line. This will bring you to the Python prompt (it will probably be

">>>"), and you can start typing commands. To exit interactive mode you can type "quit()".

Comments in Python start with "#", which is used similar to "//" in C. You can also have

multiple-line comments that start and end with three quotes in a row (either single or double

quotes), but this seems to be less common. (It is more common to start each line with "#".)

Python has more built-in types than a language such as C. These types include "int" (for

integers), "float" (for floating point values), "complex" (for complex numbers), "str" (for strings),

"list" (similar to a linked list, but it is implemented as a resizable array, and can store items of

different types), "dict" and "set" (both implemented as hash tables, with "dict" having the ability

to associate a value with each key), etc. There are many additional types, and every type supports

a lot of functionality beyond what we will be covering. The "dict" type is similar to associative

arrays in some other languages, and the existence of such a type is also something that is

common to scripting languages. In C, you would need to implement your own data structures to

support some of these constructs (don't worry about it if you are not familiar with some of the

concepts, such as hash tables). In languages such as C++ and Java, some of these constructs are

supported with provided classes.

As in other languages, one very important concept is that of variables. Variables can store

values of any of the provided types. Unlike most compiled languages, but similar to many other

scripting languages, you do not have to declare variables in Python! The interpreter will

determine the type of a variable to the left of an equal sign based on the value that is assigned to

it. If you attempt to use an undefined variable to the right on an equal sign (either alone or as part

of an expression), the interpreter will display an error message. In Python documentation, you

will often see it stated that the variable name refers to an object; this is taken from object-

oriented terminology. If you do not have experience with any object-oriented language, just

remember that the object is the thing that the variable name refers to.

Below is an example of a Pythons script that sets and displays a few variables. This example also

shows multiple ways to produce messages that combine strings and other types. The "str"

function can convert integers or floats to strings; the '+' operator concatenates strings. The "print"

statement can use codes that are similar to the "printf" function in C. Here is the script:

i = 10

f = 20.5

str1 = "Hello World!"

print "i = " + str(i)

print "i =", i # comma adds space

print "f = %.1f" % f

print "f =", f

print "str = " + str1

print "str = %s" % str1

The output looks like this:

i = 10

i = 10

f = 20.5

f = 20.5

str = Hello World!

str = Hello World!

Each text file containing Python code and ending in ".py" is called a module. We have already

seen that within a module, variables can be assigned values and statements can be executed. The

interpreter parses the lines of the module from top to bottom. Functions can also be defined

within modules, and the lines within functions only get processed when the function is called.

Variables that are assigned values outside of any function are global variables in the module.

A function definition in Python starts with the keyword "def" followed by the name of the

function, then a parameter list in parentheses (if there are any parameters), followed by a colon.

This is followed by a block of code (a.k.a. a compound statement) representing the statements

within the function. Unlike C and most other languages, there is no special symbol to represent

the start or end of a code block such as a function body. Rather, the interpreter pays attention to

whitespace and considers indentation! Any inward indentation compared to the previous line

starts a new block. When the indentation goes back to the previous level, this ends the block.

Global variables can be accessed within functions. If you do not assign the value of a global

variable within some function, you can use or display the value of that variable without having to

specify that the variable is a global. However, if the interpreter sees that a variable is set within a

function, it is assumed to be a local variable. You cannot use or display the value of a local

variable until it is assigned a value (that would lead to an error message from the interpreter). If

you want to assign the value of a global variable within a function, you must specify that the

variable is a global (with the keyword "global") at the start of the function. To explain this,

consider the following Python module:

s = "Hello World!"

print "Location globalA: " + s

def func1():

 s = "Goodbye World!"

 print "Location func1A: " + s

def func2():

 global s

 print "Location func2A: " + s

 s = "Goodbye World!"

 print "Location func2B: " + s

print "Location globalB: " + s

func1()

print "Location globalC: " + s

func2()

print "Location globalD: " + s

When you run this script, the output is:

Location globalA: Hello World!

Location globalB: Hello World!

Location func1A: Goodbye World!

Location globalC: Hello World!

Location func2A: Hello World!

Location func2B: Goodbye World!

Location globalD: Goodbye World!

Let's try to understand what is happening here. First, the "globalA" print statement executes,

displaying the global string "s"; that is straight-forward. Then come the two function definitions,

but the code within these functions is not executed until the functions are called. So the next

executed print statement displays the "globalB" message. Then "func1" is called. Since the value

of "s" is assigned within this function, it is assumed to be a local variable (i.e., it is a separate

variable from the global). We assign the variable a different string which gets displayed by the

"func1A" print statement. Note that if there were a separate "print" statement before the

assignment, this would lead to an interpreter error, because it would be interpreted as an attempt

to display the value of a local variable before such a variable has a value assigned.

After "func1" returns, the "globalC" print statement is executed, and we see that the value of the

global variable "s" has not been changed. This is followed by a call to "func2". Here, we specify

that "s" within this function refers to the global "s". We display its value once at the "func2A"

location, then change the value, then display the updated value. After "func2" returns, the final

"globalD" print statement executes, and we see that the value of the global variable has indeed

been changed.

Python does not allow you to change individual characters within a string; strings in Python are

said to be immutable. However, it is very easy to access parts of strings, and with those, new

strings can be created. Parts of strings can be obtained by placing ranges of indices within

brackets; unlike C, the indices represent positions between characters (not the positions of the

characters themselves). A 0 represents the position to the left of the first character, and for a

string with N characters, N represents the position to the right of the last character. Consider the

following example, which also shows that "\n" represents a newline character (as in C):

s1 = "Hello World!"

s2 = s1[:5]

s3 = s1[6:11]

s4 = s2 + " Planet" + s1[11:]

print s1+"\n"+s2+"\n"+s3+"\n"+s4

The output is:

Hello World!

Hello

World

Hello Planet!

Let's think about the last statement (involving the assignment to "s4") in more detail. In C, we

would need to first compute the lengths of the three strings being combined ("s2", " Planet", and

the right portion of "s1"), then allocate enough memory to hold the combined string, and then

copy in the three strings to the new memory one at a time. The Python interpreter must be doing

all of these steps also! Ultimately, the string that is formed must exist somewhere in the

computer's memory, and surely all characters are occupying (at least) one byte. Python makes

doing this simpler, for sure, but it is not any more efficient than C (and probably less so).

We'll eventually look in more detail about how to use some of Python's more interesting data

types, but first let's get some other more basic constructs out of the way. Below is an example of

a script that includes a Python "if" statement with "elif" and "else" clauses. It is also our first

example that prompts the user for input. The "raw_input" function accepts a string from standard

input. The "int" function converts a string to an integer. We have seen a similar program in C as

part of an earlier topic:

print "Enter a positive integer: ",

x = int(raw_input())

if x < 10:

 print "x has only one digit"

elif x < 100:

 print "x has two digits"

elif x < 1000:

 print "x has three digits"

else:

 print "x has four or more digits"

 print "This program does not get more specific than that"

An interesting point to make here is that, assuming you have some background in C (or really

any other programming language), you should be able to take a good guess at what this program

does even if you have never seen these programming constructs in Python before. You might not

understand that the "raw_input" function specifically returns a string (which is why the "int"

conversion function is necessary), but given the surrounding lines, you might even be able to

guess that. You can then start to make assumptions about Python syntax. For example, we see

that the we don't need parenthesis around the condition of an "if" statement, but we do need a

colon after the condition; and we see that "elif" in Python is similar to "else if" in C. We have

already seen from a previous example that the Python interpreter pays attention to whitespace,

and indentation is used to indicate blocks of code. This is not to say that you will be able to read

all code in any language once you understand a single language. If, for example, you are looking

at object-oriented code, and you do not have background in any object-oriented language, you

are not likely to understand what is happening. However, there are certain constructs that are

common to virtually all programming languages. These include things such as variables, "if"

statements, and loops (which we will cover soon). None of these concepts should present any

difficulty when you move to a new language.

One other thing to point out is that if the user types text here, the interpreter will produce an error

message when it tries to do the conversion. You might wonder how to prevent errors such as the

one that happens if a user types text in the example above. Python supports exception handling,

something that standard C does not. (Exception handling is part of many modern languages,

including C++ and Java.) We are not going to discuss any details, except to say it provides a way

of "trying" out code, and "catching" any exceptions that happen. Those of you who might have

experience with exception handling in other languages will understand this better, but the rest of

you should not worry about it.

Another thing to point out is that the "raw_input" function also allows you to specify the desired

prompt as an argument. For example, we can write:

x = int(raw_input("Enter a positive integer: "))

However, there is one difference here from the behavior of the previous program, which is that

"raw_input" automatically produces a newline after the message. In the previous example, this

was avoided by including the comma after the print statement.

Now let's also add a "while" loop to make sure that the integer entered by the user is not

negative. As with "if" statements, even if you are seeing this for the first time in Python, you

should be able to guess what this does due to your background in C. Here is the code:

x = -1

while x <= 0:

 x = int(raw_input("Enter a positive integer:"))

One very important type in Python is called "list". In Python, lists are implemented as resizable

arrays, and there are similar provided classes in C++ and Java. One interesting fact about Python

lists is that you can combine different types of elements in a single list. Here is an example,

which also introduces a Python "for" loop (which is quite different from a C "for" loop):

l1 = [1, 2, 3, 4]

l1.append(5)

l3 = [] # start empty list

for i in l1:

 print i,

 l3.append(i)

print # Just a newline

l2 = ["hello", "world"]

l2.append("goodbye")

for i in l2:

 print i,

 l3.append(i)

print

for i in l3:

 print i,

print

The output is:

1 2 3 4 5

hello world goodbye

1 2 3 4 5 hello world goodbye

The "range" function can be used to generate lists of integers with certain starting and ending

values. The statement "range(N)" generates a list of integers from 0 to N-1; "range(a, b)"

generates all integers from a to b-1; and "range(a, b, c)" generates all numbers starting at a, with

increments of c, as long as they are still less than b. For example, the "range(10, 100, 20)" would

generate the list [10, 30, 50, 70, 90]. This list can be used with a Python "for" loop, of course.

Next we will look at an example of a function that accepts a parameter and returns a value. Note

that neither the type of the return value nor the type of the parameter needs to be specified. In

this case, we are writing a function that takes a single parameter, assumed to be an integer, and it

returns a list. The list will contain all of the Fibonacci numbers less than or equal to the input.

(The Fibonacci sequence starts with [1, 1], and each additional number is computed by adding

together the previous two.) Here is the code (mostly taken from an on-line Python tutorial):

Create a list containing all Fibonacci numbers

less than or equal to n

def Fib(n):

 res = [] # start with empty list

 a, b = 1, 1

 while a < n:

 res.append(a)

 a, b = b, a+b # generate next number in sequence

 return res

print Fib(100)

Fib2 = Fib(1000)

print Fib2

This program will display:

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

There are a few things to notice here. First, only the name of the parameter needed to be

indicated. Because we pass an integer argument, the interpreter treats the parameter "n" as an

integer. The return value is a list, and again, the type did not need to be specified. We see the

script calls the function twice, and the return value can be displayed directly or assigned to a

variable. We also see that "print" knows how to display a list. Another thing introduced in this

example is the ability to combine multiple assignments on a single line. For example, consider

the line "a, b = b, a+b". The way this works is that the right-hand side expressions are evaluated

first, and then the results are assigned to the left-hand side variables from left to right.

We'll look at one more provided type, called "dict". As mentioned earlier, this is similar to

associative arrays in other languages. You can think of a "dict" as being a set of (key, value)

pairs. The keys are often strings, but they can also be integers, floats, etc., and a single "dict" can

have a mix. Let's say you use a "dict" to represent common spelling errors and their corrections.

The following code sets up a very simple "dict" to represent some common corrections. It then

allows the user to type words one at a time; the words are either corrected or left the same.

corrections = { "teh":"the", "adn":"and", "mispell":"misspell" }

while True:

 word = raw_input("Enter a word:")

 if word == "quit":

 break

 if word in corrections:

 print corrections[word]

 else:

 print word

We see here how a "dict" can be initialized, and how a key can be mapped to its corresponding

value (see "corrections[word]" in the code above). We also see that "in" can be used to check if

an item is an existing key in a "dict". We also see how string comparison works, and we see that

we can "break" out of a loop. The values "True" and "False" are recognized keywords in Python.

You should be able to figure out the rest, or try out the code for yourself.

There is so much more to Python that we haven't discussed. There are many other provided

types, and a lot more functionality to the types we did discuss. There is also exception handling

(briefly mentioned earlier), and the ability to create classes. The Python standard library

provides many additional modules providing further functionality, dealing with topics such as

advanced mathematical concepts, regular expressions, Internet communication, and much, much

more. Then there are other common libraries available (not part of the standard library, but made

available by their creators) to help out with graphics, graphical user interfaces, web development,

natural language processing, database interaction, etc. In fact, I would say it is the usefulness of

this vast array of available libraries that really makes Python so valuable.

We will look at one module from the standard library, just to show an example of how to import

a module and use its routines. I have chosen the "random" module (not that it is particularly

important, but it is simple and provides some interesting functions). We will look at only two of

the routines. The function "random" generates a random float in the range [0.0, 1.0) (inclusive of

0.0, not inclusive of 1.0). The function "randint" takes two parameters, call them "a" and "b", and

it generates a random integer in the range from "a" to "b" (inclusive of both). Now consider the

following code:

import random

for i in range(10):

 x = random.random() # random float in range [0.0, 1.0)

 print x,

print

for i in range(10):

 x = random.randint(1, 10) # random integer from 1 to 10

 print x,

print

The actual name of the module we are importing from the standard library is "random.py", but

you leave out the ".py" extension in the "import" statement. Important a module provides access

to its defined functions. (If there were statements in the imported module outside of functions,

these would also be executed, but this would not be standard.) You can also import a module that

you write yourself in another module.

This code includes examples that combine the "range" function, which produces a list, with the

Python "for" loop. Within the two loops, we see calls to two functions from the "random"

module that produce pseudo-random results. To call these functions, we specify the name of the

module, followed by a period, followed by the function names. I cannot specify the exact output

of this program, because it will likely be different every time the program is executed. However,

it will produce two rows of output, each containing ten comma-separated pseudo-random values

as described. The reason I say "pseudo-random" is that a computer is a deterministic device that

is not capable of true randomness. The results are based on formulae that we are not aware of,

plus a seed which, by default, is a representation of the date and time of day. The important thing

is that the results appear random to us, and we cannot predict the values (because we do not

know the seed or the formulae).

Note that it is also possible to produce pseudo-random numbers in C using the "rand" function,

whose prototype statement is in the "stdlib.h" header file; this function returns a pseudo-random

integer in the range of 0 to RAND_MAX (a pre-defined constant). However, if the programmer

wants the program to produce different results every time, they must explicitly seed the random-

number generator (using a different function called "srand") with the date and time of day (using

the "time" function, whose prototype statement is in the "time.h" header file). If a C programmer

wants to produce pseudo-random floats or pseudo-random integers in some specific range, they

must use their own formulae to convert the return values of "rand".

How does Python compare to C overall? It is certainly much easier to quickly write code that can

perform some powerful tasks (especially if there is an available module that directly applies to

your task). However, as is the case with other scripting languages, I think most programmers

would agree that Python is not the best choice for writing large applications that need to be very

efficient. More debatably – and I may be in the minority on this point – I personally believe that

C is a better language to learn first. C forces you to understand to a much greater extent what is

happening in memory, and I find that programmers who understand what is happening in

memory are usually much better programmers. In any case, the purpose of this introduction was

to give a brief introduction to Python, and I hope that some of you choose to explore it in much

more depth on your own.

