ECE 264 - Data Structures and Algorithms, Part I

Topic: Overview of C++

This course is not a course that teaches a programming language; we learn about data structures and algorithms that can be implemented in any language
I am not assuming prior knowledge of C++; however, I am assuming fluency with standard C; also, this is just an overview, and you may need to learn some details of C++ on your own
This overview is mostly based on a previous version of C++ (which has not changed much since 1999); C++11 was a major new release; C++14 was a relatively minor release
Three books that I would recommend for interested students are:

· "The C++ Programming Language, 4th Edition" by Bjarne Stroustrup (updated for C++11)
· "Programming: Principles and Practice Using C++, 2nd Edition" by Bjarne Stroustrup (more for beginners; updated for C++11, and even C++14)
· "Thinking in C++, 2nd Ed." by Bruce Eckel (a two-volume book, but you should only need Volume 1; available for free on-line; not updated for C++11)
We’ll start by saying that C++ is a superset of C; so you already know a good portion of C++
Selection statements, loops, functions, arrays, pointers, etc. are all the same as in C; so are the standard data types (plus they added a "bool" type)

Variable declarations can be placed anywhere (true of recent versions of C as well)
The biggest addition to the language is support for object oriented programming, but there are many other additions to the language as well

Some additions are meant to replace functionality that already exists, but they did not remove the standard C methods to support backwards compatibility

The compiler you will be using is g++ (which technically is calling gcc with a variety of compiler options turned on); some C++ file extensions: .C, .cc, .cxx, .cpp, .c++
Let's look at a simple "Hello World" program:
#include <iostream>

using namespace std;

int main() {

 cout << "Hello World!" << endl;

 return 0;

}

Systems with much older versions of C++ may require two changes to this program:

· The included header file will be <iostream.h>

· The line "using namespace std;" will not be there

Talk a little about namespaces; if you leave out the "using namespace std;" line (which some programmers consider bad style), you will need to include "std::" before "cout" and "endl"

The "::" is the scope resolution operator; technically speaking, a namespace is a scope

As with C, the "int" before "main" and the "return 0" are optional but suggested

Also, you can optionally put the word "void" in between the parentheses of the function header of "main"; the convention in C++ is to leave it out

C++ uses streams for input and output; "cout" is the standard output stream
The <stdio.h> library header file and old C functions (e.g., "printf") still exist and can be used, but the C++ convention is to avoid them

If you do want to include an older library, the header files each have two names; <stdio.h> can also be referred to as <cstudio>

The "<<" is the "put to" operator; the "endl" is the newline character; you could just use "\n" instead and include it within the quotation marks (using "endl" also flushes the output buffer)
Input can be read from "cin", the standard input stream, using ">>" (the "get from" operator); you can get values for multiple variables with one line of code
C++ offers two types of strings; the first is the C style string (using arrays or pointers to characters); to use the related, provided functions, include the <cstring> header file

The second is the provided class "string"; to use this class, include the <string> header file; you can assign a C style string to a C++ style string directly

The C++ string class has several useful member functions (a.k.a. methods) and overloaded operators; some examples are:

string s1 = "Hello";

string s2 = "World";

string s3 = s1 + " " + s2 + "!\n";

string s4 = s3.substr(6,5);

s3.replace(6, 5, "planet");

There is clearly a lot going on in memory when the replace member function is called

You can also compare C++ style strings to each other using ==, >, and <

If you are going to read from or write to text files, include the <fstream> header; appropriate input and output streams could then be declared like this:

ifstream input(filenameInput.c_str());
ofstream output(filenameOutput.c_str());

We are assuming that "filenameInput" and "filenameOutput" are C++ style strings; note that these declarations are calling constructors of the stream classes

Once these streams have been created, you can use them very much like "cin" and "cout"
One provided class that you should know about is the "vector" class; to use it, you need to include the <vector> header

This allows you to declare vectors, which are resizable arrays, of any type of variable; for example, you can declare:

vector<int> vInt(10);

You might resize such a vector like this:

if (pos >= v.size())

 v.resize(v.size() + size);
Here are three ways to display the elements in this vector (discuss the related concepts):

for (int i = 0; i < v.size(); i++)

 cout << v[i] << endl;

for (int i = 0; i < v.size(); i++)

 cout << v.at(i) << endl;

for (vector<int>::iterator ii = v.begin(); ii != v.end(); ii++)

 cout << *ii << endl;

Another useful provided class to know about is the "map" class; to use it, you need to include the <map> header

Here is an example declaration with a couple of assignment statements:

map <string, string> correction;

correction["teh"] = "the";

correction["adn"] = "and";

C++ also allows references, which specify a second name for a variable; you can think about a reference as a pointer that is automatically dereferenced each time it is accessed

Here is a short function using a reference:

void increment(int &r) {

 r++;

}

Only an l-value can be assigned to a reference, and so you will get a compiler error if you try to pass other values to this function
Dynamic memory in C++; "malloc" and "free" still exist, of course, but it is better to use "new" and "delete"; they behave better (e.g., throw exceptions); to use, you need to include <new>

First example: Here, "p1" points to memory holding the single integer 5:

int *p1;

p1 = new int(5);

Second example: Here, "p2" points to an array large enough to hold 5 integers

int *p2;

p2 = new int[5];
You can delete the allocated memory like this:

delete p1;

delete p2[];

Error handling in C++ is often handled with exceptions; for example, by default, the "new" operator throws a "bad_alloc" exception when a program runs out of memory

try {

 for (;;) new char[10000];

}

catch (bad_alloc) {

 cout << "Memory exhausted!" << endl;

}

Note: If you run this on a PC, you'll run into virtual memory problems and see a major slowdown before the error message is displayed

Technically, what is being thrown is an object of some specified type

The type in the parentheses of the "catch" expression specifies the type of exceptions that this catch block can catch; optionally, you can specify a name for the caught object
C++ allows you to overloading functions, meaning that you can have different functions with the same name

The function that gets called depends on the type and/or number of arguments passed

Here are some prototype statements:

void print(int);

void print(const char *);

void print(PERSON);

The next two together can lead to errors due to ambiguity:

void print(double);

void print(long);

You will then get a compiler error if you try to pass, for example, an integer to "print", although this can be disambiguated with a cast
Functions in separate scopes do not cause overload ambiguities

Overloading also considers the number of parameters:

int add(int x1, int x2);
int add(int x1, int x2, int x3);
Functions can also be defined to provide default values for missing arguments

int convert(char *num, int base=10);

This brings us to classes; a class is a user-defined (or provided) data type that represents a concept

Allowing programmers to create their own classes has become the key way to allow object-oriented programming
According to Stroustrup, the main purpose of classes is to provide programmers with the tools for creating new types as convenient as built-in types

My perception: The main benefit of classes is to encourage programs that are better organized, more flexible, and easier to write and maintain with multiple programmers

Note that both views focus on notions such as convenience, organization, flexibility, etc.

Also note that nothing that has been added to C++ increases the power of the language in a theoretical sense; the additions make it easier, however, to write, understand, and maintain code
We will take Stroustrup's view, and look at an example setting up a class called "Date"
Idea: We want the programmer to be able to use, initialize, manipulate, and access dates without being aware of their internal structure

Note: Even a simple concept like "Date" would take a long time and a lot of planning to really get it right; we are going to mostly ignore certain aspects such as error handling

When I cover the concept of classes in a more introductory course related to programming, I like to start by looking at how we might set up a structure for the date concept in standard C

Then we see how it could be done in C++, and then slowly improve the example so that it is closer to how it should be done in C++

Here, we will just jump to the final class in order to summarize various relevant concepts
Here is a class definition (we will fill in some of the code later):

class Date {

int d, m, y;

static Date default_date;

public:

Date(int dd = 0, int mm = 0, int yy = 0);

Date(const char *); // date in string representation

static void set_default(int dd, int mm, int yy);
Date& set_day(int);

Date& set_month(int);

Date& set_year(int);
int day() const {return d;}

int month() const {return m;}

int year() const {return y;}
void display();

inline bool operator==(const Date &);

…
};

Before looking at the specifics of the class definition, talk about what is going on here in general; compare this to a C structure; discuss the concept of encapsulation
Then talk about private versus public data, and talk about information hiding
Now talk about the "d", "m", and "y" fields of the Date class; these are data members; what look like prototype statements define member functions (a.k.a. methods)

Show how you can declare objects of type Date; an object is an instance of a class (or, as I like to refer to it, a variable whose type is a class)
Constructors define how objects are initialized when they are declared; all constructors must have the same name as the class; no return type or value is specified

If you do not provide a constructor, there will be a default constructor that just allocates space for the object; if there are one or more provided constructors, there is no default constructor
Show how we could have used simple constructors that take exactly one, two, or three integer parameters; then explain default parameters
Then explain static data members and member functions; sometimes these are referred to as class members (or methods) as opposed to instance members (or methods)
In C++, when a class contains a static class member, there must also be a line after the class definition to initialize it; for example:

Date Date::default_date(5, 11, 1955);

Static member functions can only access static data members; for example:
void Date::set_default(int d, int m, int y)

{

default_date = Date(d, m, y);

}
Now show the final constructor:

Date::Date(int dd, int mm, int yy)

{

d = dd ? dd : default_date.d;

m = mm ? mm : default_date.m;

y = yy ? yy : default_date.y;

}
Show how the new constructor can be used to allow different types of declarations

An implementation of the other constructor would allow us to declare Date objects and pass in strings, which of course would need to be parsed (but we will not look at code for this)
It is also possible to declare an object by assigning it the value of another object of the same type; this calls the copy constructor, which bypasses the regular constructors

This is different than a regular copy, which occurs when the assignment operator is used separate from a declaration
Both the copy constructor, and the regular copy, have default behaviors, but both can be overloaded (redefined), which might be useful when pointers are involved (explain)

Show how the simple "display" member function can be defined (and also note that this is sloppy code; it would be better to overload the "put to" operator):

void Date::display() {

 cout << m << "/" << d << "/" << y << endl;

}

The simple "set_day" member function can be defined like this:
Date& Date::set_day(int dd) {

d = dd;

return *this;

}

Talk about "this", a pointer to the object through which the member function has been invoked

Discuss why it is useful to have this member function return a reference

Now look at the "day", "month", and "year" member functions, which were defined, and not just declared, within the class definition; discuss the use of "const"
These are sometimes called "getter functions" (or "getters") while the set functions are sometimes called "setter functions" (or "setters")

When you define a member function within the class definition, they become inline member functions; you should only do this for short, commonly used functions; explain

You can also make inline functions, or member functions, using the "inline" keyword

At this point that you might think it would have been simpler to make everything public, so you could set and get their values directly; re-explain the benefit of information hiding
Now explain operator overloading (not allowed in Java); I like to spend an entire week on this in a more introductory programming course, but here we are looking at one simple example

We are overloading one of the comparison operators ("==") when applied to two Date objects (note that this operator is not defined for structures or classes by default)
The code for the overloaded operator could look like this (it is also possible to overload operators completely outside of a class definition):

inline bool Date::operator==(const Date &x) {

 return (d == x.day() &&

 m == x.month() &&

 y == x.year());

}
Classes represent concepts, and concepts can be related to each other; derived classes allow us to express hierarchical relationships
Let's say we want to store data for employees and managers; keep in mind that a manager is also an employee

One way to define the classes is like this:

class Employee {

 string first_name, last_name;

 // ...

public:

 Employee(const string&, const string&);

 void print() const;

 string full_name() const {

 return first_name + ' ' + last_name; }

 void set_name(const string& last,

 const string& first);

 // ...

};

class Manager:public Employee {

 list <Employee *> group;

 int level;

 // ...

public:

 Manager(const string&, const string&, int x=0);

 void print() const; // redefines print for derived class

 void set_level(int);

 // ...

};

Manager is derived from Employee, and Employee is a base class for Manager

The base class is also known as the superclass and the derived class is also known as the subclass; however, I think that these terms can be confusing (explain)
A derived class is said to "inherit" the data members and member functions from its base class, and this property is known as inheritance
The class Manager has all the members of Employee plus additional members; constructors (and overloaded assignment operators and friends) are not inherited
Hierarchies are often represented graphically by a pointer from the derived class to the base class

We are not going to fill in all of the member functions in these classes, but let's look at the "print" member function for the Manager class (and also note that this is sloppy):

void Manager::print() const {

 Employee::print();

 cout << "Level: " << level << endl;

}

We had to implement "print" for the Manager class something like this; a member function for a derived class cannot access private members of the base class
If derived classes could access private members of base classes, a programmer could gain access to private members of any class by creating a derived class from it

The creator of a class can choose to make some members or member functions of a base class "protected"; explain

You can make the access specifier of a derived class protected or private (explain); here we have made it public, which is probably the most common choice, but private is the default

The constructor for Manager would be written like this:

Manager::Manager(const string &f, const string &l, int x)

 :Employee(f, l)

{

 level = x;

}

This is because Manager does not have access to the private members of Employee, and the constructor for Employee must be called

Once classes like these are set up, you would be allowed to assign a Manager object to an Employee object, but some data would be lost

More common in C++ is to use pointers when dealing with hierarchical classes; consider:

 Manager m1;

 Employee e1;
 // ... (Assume the values of m1 and e1 get filled in)

 list<Employee *> elist;

 elist.push_back(&m1);

 elist.push_back(&e1);

 // ...

There are several concepts here which we have not talked about yet, like the provided linked list class and templates, but we'll not worry about this yet

Since a Manager is also an Employee, remember that statements like the following are also valid:

 Employee *pe1 = &e1;

 Employee *pe2 = &m1;

As things currently stand, "pe2" does not "know" that it points to a Manager; the following statement would just call the Employee "print" member function:

 pe2->print();

What if we want to set the Manager's level or use Manager's print function? One solution would be to use the following statements:

 static_cast<Manager *> (pe2)->set_level(10);

 static_cast<Manager *> (pe2)->print();

The parentheses around "pe2" are necessary due to precedence

At run time, though, how would you know if a pointer to an Employee actually points to a Manager at some point in the code where either is possible?

Once solution would be to have a specific, private data member set aside for this purpose that is set in the constructor; e.g. 'E' for Employee and 'M' for Manager

C++ offers a better way to handle this; we can define the "print" member function in the base class to be a "virtual" function:

 virtual void print() const;

A virtual function must be defined in the base class, but it can be redefined in any derived class; a pure virtual function is an exception that we will talk about later

When a virtual function is called through an object manipulated through a pointer, the compiler will ensure that the correct function is called

Getting things right in this type of situation is a property of the language known as polymorphism
A class with one or more virtual functions is called a polymorphic class; if a class is polymorhic, so are all classes derived from it

The compiler automatically gives any object of a polymorphic class extra overhead that is used to indicate the exact class

We have now seen four very important properties involved with classes: encapsulation, information hiding, inheritance, and polymorphism
A virtual function can be made "pure" by initializing it to zero; for example:

class Shape {

public:

 virtual void rotate(int) = 0;

 virtual void draw() = 0;

 virtual bool is_closed(); // not a pure virtual function
 ...

};

A class with one or more pure virtual functions is an abstract class and can only be used as an interface; no objects can be declared of such a type
A derived class from Shape above might look like this:

class Circle : public Shape {

 int radius;

 Point center;

public:

 void rotate(int);

 void draw();

 bool is_closed(); // optionally overridden
};

Of course, the functions "draw" and "rotate" need to be defined for this class (or else it will also be an abstract class)

Talk about the usefullness of abstract classes

Next, we will discuss templates; this is how C++ supports generic programming
Templates allow us to treat types more or less as parameters, and to write function templates or create class templates that can deal with many different types of values

This is especially important for a course on data structures and algorithms, as many general data structures and algorithms can be applied to many different types

For example, when we implement a linked list, we want to be able to write the code for the linked list class once and yet be allowed to create lists of many different types

As another example, when we implement a sort, it would be nice if we could write a single sort that could then be applied to many different types of data

Many of the provided classes in C++ were written using templates; these include the provided vector, list, and map classes

Here's an example of a simple function template and its usage:
template <class T>

T GetMax (T a, T b) {

 T result;

 result = (a>b)? a : b;

 return (result);

}

int main () {

 int i=5, j=6, k;

 double l=10.1, m=5.2, n;

 k=GetMax<int>(i,j);

 n=GetMax<double>(l,m);

 …

}

The lines that call the function could also just look like this:
 k=GetMax(i,j);

 n=GetMax(l,m);

Our textbook shows a slightly more complex example in Section 1.6.1

Here is an example of a class template and its usage:

template <class T>

class mypair {

 T a, b;

public:

 mypair (T first, T second) {a=first; b=second;}

 T getmax ();

};

template <class T>

T mypair<T>::getmax ()

{

 T retval;

 retval = a>b? a : b;

 return retval;

}

int main () {

 mypair <int> myobject (100, 75);

 cout << myobject.getmax();

 return 0;

}
The definition of a template does not automatically lead to code in an executable, since it really just represents a pattern for code that can deal with some particular class

Each time that a generic function or class is instantiated, this causes the compiler to generate new code based on the current usage of the template

Usually, when writing a function with multiple files, the convention is to put the interface in header files (.h files) and the implementation in c++ source code files (e.g., .cpp files)

However, when writing templates, the implementation must be in the same file as the interface; i.e., both must be in a header file

This header file must be included in any file that uses the template

With a typical header file (i.e., no templates), putting the implementation in the header file could lead to linker errors if the header file is included in multiple files

Since a template, by itself, does not actually generate code, this problem is avoided

Important: A new edition of C++, known as C++11, has become the new standard (and a minor release, known as C++14, adds some bug fixes and other small improvements)
Students are welcome to learn the new features on their own, and may use them for the assignments in this class (or DSA2); however, we will not cover this in class
