Data Structures and Algorithms I
Spring 2011
Programming Assignment #2
You are going to write a program that sorts the nodes of a linked list. Each program will load data from a file and create a linked list of pointers to data objects using the provided C++ list class. Each data object will consist of a single C++ string. After creating the list, the program will sort the list according to the values of the strings. The input and output files will have the same format. The first row will be in integer indicating how many rows follow. Each row after that represents a single data object and contains a string of ASCII characters followed by a Unix-style newline character ('\n').
The nodes in the linked list are to be sorted according to the values of the strings. Characters or compared left to right according to their ASCII values. If two strings contain the same characters up to a point, and at that point, one of the string ends while the other continues, the string that ends at the point should come first. The less than operator has already been overloaded for the C++ string class to provide the correct behavior. Note that if two strings contain all of the same characters in the same order, they are indistinguishable, and it does not matter which one is listed first (i.e., you do not have to create a stable sort).

I am providing you with code that handles most aspects of the program, and you may not make any changes to the provided code. This includes the implementation of a simple class to store the data objects, the file loading routine that loads the data from an input file, and the file saving routine that writes the sorted data to an output file. There is also a call to a sort routine that you must fill in. You may also add additional functions, additional class definitions, or additional global variables if you wish, but all of the added code must occur below a specific comment which indicates that the code above the comment may not change. (You should even be able to include additional provided header files below the comment. If you want to do this but your compiler does not support it, then include them at the top of the file, and mention this in your e-mail when you submit the program.) I will use the "diff" command to make sure you have not changed any code above the comment.

Your program will be tested on four test cases, which we will call T1…T4. For each of these test cases, a single file will exist using the format specified earlier (the first row will indicate the number of rows to follow, and each additional row contains a single string). The contents of the four test cases will also adhere to the following specifications:
· T1 will contain approximately (within 1 percent of) 100,000 data objects. Each data object will store a randomly generated string. First, the length each string will be randomly chosen to be an integer in the range of 1 to 500. Then random ASCII characters with ASCII values in the range of 33 to 126 will be generated to create the string. A sample file with this format will be provided on the course home page; the provided file will not be the same T1 that will eventually be used to test your programs, but it will be generated the same way.
· T2 will contain approximately 1 million data objects. Each data object will store a randomly generated string, and each string is generated the same way as for T1. The only difference between the processes for creating T1 and T2 is that more strings are generated for T2.
· T3 will contain approximately 1 million data objects. Each data object will store a randomly generated short string. Each string will consist of exactly five lowercase letters (ASCII values 97 through 122), and every letter will be randomly generated.
· T4 will contain approximately 1 million data objects in close-to-sorted order. Each data object will store a string containing exactly 100 upper case letters (ASCII values 65 through 90). Before generating the strings for data objects, an initial string of 100 random upper case letters will be generated. The ith string in the sequence will then be generated as follows. First an offset, Oi, is randomly generated to be an integer in the range of -5 to 5. Then the original string will be viewed as a base 26 number with possible digits A through Z. We will call this value V. A new number will be generated for the ith data object with value V + i + Oi. This sum will still have 100 digits, with possible digits A through Z, and this value will constitute the ith string.
Every working program will be assigned a score that is based on the CPU times that the program takes to sort each of the four test cases. If time1…time4 are the CPU times required by the program when tested on T1 through T4, respectively, the overall score for the program will be 10 * time1 + time2 + time3 + time4. Assuming that it works (i.e., it generates the correct output for all four test cases), your program will be graded almost entirely based on this overall score just described. I expect working programs, and you will lose a lot of points for incorrect output. I may take off up to a few points for poor indentation (which does not affect speed, since it is ignored by the compiler), but otherwise, you will not lose points for lack of elegance. Anything goes, so long as your write the program individually. You may use any provided classes or routines to which you have access, including the provided sort member function of the C++ list class (which provides an implementation of merge sort) or the provided sort function from the C++ algorithm library (which provides an implementation of quicksort).

If you wish, your program may try to figure out which test case it is dealing with and use different strategies for each. You don't really have to get that perfect – if you can determine that your code has less than a one in a million chance of guessing the format of the file wrong, that is safe. (In general, if your output is not correct, and you can convince me that it was a fluke with less than a one in a million probability, I will generate new test data and run it again – but, of course, if you are wrong, the program will not get the second chance.) Your program does not have to work for any test case that does not follow one of the above specifications.
Submit your program to me by e-mail. E-mail the code to me as an attachment sent to CarlSable.Cooper@gmail.com. I will compile all programs using the g++ compiler that is provided with cygwin and I will test the executable under this environment; no compiler optimization options will be used for any program. Your program is due before midnight on the night of Friday, May 6. There's a lot of room for creativity with this assignment, so have fun with it!
