Natural Language Processing
Spring 2010
Individual Programming Project
For this project you will create your own a text categorization (TC) system.  I recommend that you use one of the three machine learning methods for text categorization that we covered in class.  You are free, however, to implement your system in any way that you choose, as long as you implement the crux of the algorithm yourself.  (You are allowed to use available NLP resources that are not specifically related to text categorization if you wish.  For example, if you want to use a part-of-speech tagger and you find one that is compatible with your TC system, you may use it.)
Your program must allow the user to specify the names of two input files.  The first will contain a list of labeled training documents.  Each row of the file will list the relative path and filename of one training document followed by a single space and then the category of the document.  The system should use these training documents to train itself appropriate so that it can predict the labels of future documents according to the learned categories.  The second file will contain a list of unlabeled test documents.  Each row will consist of a single string representing the relative path and filename of one test document.  The program should loop through the indicated test documents and categorize each one based on how it has been trained.  After all of the predictions have been made, the program should allow the user to specify the name of one output file.  This file should list the test documents along with their predicted labels; the file format should be same as the format of the training file.  If your program were to achieve perfect accuracy (which is not feasible), then the two files would be identical.

If you wish, you may separate the training and testing into two separate programs.  The disadvantage of this would be that your training program would need to save all of its learned statistics in a file, and the test program would have to reload this information.  (If you choose to do this, you can also have both programs prompt the user for the name of this file.)  The advantage is that this would allow you to train your system once for a set of categories, and then using the saved statistical file, you could test the trained system on multiple test sets.  Since training is much more computationally intensive than testing, this can be beneficial; but for this project, it probably doesn't matter.

To test your programs, I am providing you with one entire corpus, including a training set and a test set.  This corpus involves the categorization of news documents into mutually exclusive categories:  Str (Struggle), Pol (Politics), Dis (Disaster), Cri (Crime), or Oth (Other).  It is guaranteed that every document falls into exactly one of these categories.  I am also provided you with just the training sets (but not the test sets) for two other corpora.  The second corpus involves the categorization of images based on the first sentences of their captions into the categories:  O (Outdoor) or I (Indoor).  The third corpus involves the categorization of news documents into the mutually exclusive categories: Wor (World News), USN (U.S. News), Sci (Science and Technology), Fin (Finance), Spo (Sports), or Ent (Entertainment).  For these corpora, you will need to create your own tuning set or use cross-validation to evaluate your system.

I have posted a file on the course website called TC_provided.tar.gz.  If you download this file to a Linux system or to a Windows sytem with cygwin, you can extract the contents by typing "gunzip TC_provided.tar.gz" and then "tar –xvf TC_provided.tar".  This will create a directory called TC_provided.  The contents of this file will include the following files:

· corpus1_train.labels: This file contains the list of labeled training files for corpus 1.  Note that there are 885 training documents, and the 5 categories are not represented equally (282 Str, 243 Pol, 207 Dis, 100 Cri, and 53 Oth).
· corpus1_test.list: This file contains the list of test files for corpus 1.

· corpus1_test.labels: This file contains the list of labeled test files for corpus 1.  I am providing this to you so that you can evaluate your TC system after applying it to the files listed in corpus1_test.list.

· corpus2_train.labels: This file contains the list of labeled training files for corpus 2.  Note that there are 894 training documents including 621 with category O and 273 with category I.

· corpus3_train.labels: This file contains the list of labeled training files for corpus 3.  Note that there are 955 training documents, and the 6 categories are not represented equally (338 Wor, 245 USN, 124 Sci, 114 Fin, 92 Spo, and 42 Ent).

There are also 3 folders called corpus1, corpus2, and corpus3.  Within corpus1, you can find both the training and test documents.  Within corpus2 and corpus3, you can find only the training documents.  I, of course, have test sets for all the corpora.  I can tell you that in all cases, files were distributed randomly between the training and test sets, so while the relative sizes of categories in the test set will not be identical those in the training set, you can expect them to be similar.  Also, in all three cases, approximately 1/3 of the documents were placed in the test set.

I have also provided, in the root directory, a file called analyze.pl, a Perl script that I wrote to compare the output of your text categorization system to a file with the actual labels for the test set.  You can use this directly to evaluate your system's results for corpus1.  For example, if you name your output file "corpus1_predictions.labels" for corpus1, you can type the following (assuming Perl is installed on your system):

perl analyze.pl corpus1_predictions.labels corpus1_test.labels
If your output file is in the correct format, this will display a contingency table indicating the breakdown of correct and incorrect predictions according to categories, with columns indicating actual categories and rows indicating predictions.  You will also see reported the precision, recall, and F1 measures for each category, as well as the overall accuracy of the system.

Since I am not giving you test sets for two of the corpora, you should use one of the methods discussed in class to evaluate your system for these corpora.  You can either divide the training set into a smaller training set and a tuning set, or you can use cross-validation.  You should never train and test on the same document in one experiment.
A user-friendly text categorization system should not assume specific categories; it should base them on the training set that it is provided.  However, you may assume that your system will only be used for these sets of categories, and you may hardcode them into your system if you wish.  You should not require the user to type in the category names, however.  At most, you may prompt the user to type in a 1, 2, or 3 to indicate which corpus is being used.  (Of course, you have the option of creating a general system which detects all of the categories by itself when processing the training or test lists.)
Your project may be written in any language, but I want to be able to run it either within cygwin or Ubuntu.  If you e-mail me your program early, I will test it on these data sets and let you know the performance.  You will then have an opportunity to improve your system and resubmit it if you are not satisfied.  (Expect that it might take me a day or two to reply to you though.)  Assuming that your program meets all of the requirements, the grade will largely depend on how well the system performs.
When you e-mail me your final project, I would also like a short writeup describing your system; one or two pages should be enough.  The information provided in your writeup should include:

· Instructions explaining how to use your system (including how to compile the code).

· Which basic machine learning method did you use?

· How does your system tokenize training and test files?

· What weighting scheme, if any, is used for tokens?

· Which parameters did you experiment with (e.g., possibilities might include case sensitivity, POS tagging, stop lists, etc.)?

· You may include any additional information that you wish.

Get started early and have fun with it!
