Data Structures and Algorithms I
Spring 2009
Homework #2
(1) For each of the following descriptions of something stored in memory when a program that was coded in C++ is running, state whether the memory is part of static memory, an activation record in the stack, or the heap (i.e., dynamic memory). For those entities that are stored in an activation record, state whether the memory resides in the first, second, or third section of the activation record, according to the breakdown discussed in class.

(a) A global double variable
(b) A float that is a parameter of a function

(c) A float that is a parameter of a member function of a class

(d) An integer that is a parameter of a constructor

(e) A float that is part of a standard array of floats, where the array is a local variable of a member function of a class

(f) A float that is part of a vector of floats, where the vector is a local variable of a member function of a class

(g) A temporary variable that is generated by the compiler to store a value used along the way when evaluating an expression that occurs in a member function of a class

(h) A character that is part of a C-style string that was dynamically allocated using the C++ new operator if the string is pointed to by a global pointer

(i) A character that is part of a C++ string object if the string is a parameter of a regular function

(j) A double that is a public data member of an object that is a local variable of a function

(k) A double that is a private data member of an object that was dynamically allocated using the C++ new operator if the object is pointed to by a pointer that is a local variable of a member function of a class
(l) The original value of a register that needs to be restored upon completion of a function
(m) An integer that is part of a node in a linked list if the linked list uses the provided C++ list class and is declared as a local variable of a function

(n) An integer that is part of a node in a linked list if the linked list uses the provided C++ list class and is declared as a global

(o) An integer that is part of a vector if the vector is a protected data member of an object that is a parameter of a member function of a class
(p) The actual memory address stored in a global pointer to an object if the pointer points to an object that has been dynamically allocated using the C++ new operator

(q) The actual memory address stored in a global pointer to a C++ string if the pointer is declared as a local variable of a function and it points to a global C++ string

(2) Answer the following questions concerning lists, stacks, and queues:
(a) Let's say you want to display the information from all the nodes of a singly linked list in reverse order (i.e., the last node first and the first node last). One way to do this relies on a recursive function, but you might run out of space in the call stack if the linked list is very large. Another solution is to traverse the list and reverse all the pointers, thereby reversing the list, and then traverse the new list in reverse. This can be done in linear time, but it modifies the original list. You can restore the original list in linear time as well (by reversing the pointers again), but it may not be the most efficient algorithm. Describe, in words, a simple, linear-time algorithm that relies on a stack in order to display the information from the nodes of a singly linked list in reverse order.
(b) If you push an item, X, onto a stack containing N items, what is the minimum possible number of pops and maximum possible number of pops that will be required before this item is popped from the stack (considering that any number of pushes might occur between then and now)? What if the same question is posed for a queue?

(c) Exercise 3.25, part (a) from the textbook: Propose a data structure that supports the stack push and pop operations and a third operation, findMin, which returns the smallest element in the data structure, all in O(1) worst case time.
(d) Exercise 3.27 from the textbook (reworded slightly): If the recursive routine used to compute Fibonacci numbers (this was covered in class as part of a previous topic) is run for N = 50, is stack space likely to run out? Why or why not?
