ECE361: Software Engineering and Large System Design

Spring 2008
Project Description

Part I: Background
This semester, the class will design and implement a software system that can be used by instructors teaching courses in Artificial Intelligence (AI) and students taking these courses. The creation of the system itself will not rely on any particular AI knowledge, as will soon be made clear. Rather, it will rely on many important software engineering principals, and it will require that the developers of the system (in this case, the students in our class) learn how to use various available tools, libraries, and protocols.

One major component of most general AI courses is intelligent search, and in particular, the use of intelligent search to implement seemingly intelligent game playing programs. One famous example of such a program is Deep Blue, which stunned the world when it beat Gary Kasparov in a six-game chess match in 1997. Deep Blue relied on some large databases (e.g., databases storing opening games and end game positions), and several advanced techniques, but mostly it used the same algorithms used by almost all AI game playing programs. Although those who are unfamiliar with the AI techniques used by programs that play games such as Chess may not intuitively realize that this is related to search, the truth is that most of what these programs are doing involves searching through a game space in which nodes represent states of a game (e.g., a board position and whose turn it is) and edges represent legal moves. The teaching of these algorithms takes weeks to cover in an AI class, but thankfully, such knowledge is not necessary for the creation of the system proposed here.

Once students in an AI class have learned about intelligent search for the use of game playing, it is common for the instructor of such a course to assign the implementation of a game playing program. Chess is too hard, largely because the code to determine legal moves is somewhat complicated, and so are the heuristics to determine which board positions are desirable. However, games such as Checkers and Othello (a.k.a. Reversi) are appropriate; it appears to me that these are the two most common games assigned to students in AI classes (and they are the games that I assign when I teach Artificial Intelligence, nowadays giving each student a choice between the two). Keep in mind that this is far from a trivial task. My own experience, both as an instructor and also as a student who took similar courses as an undergraduate and a graduate student, is that many students do not finish the assignment. I would estimate that in a typical class, about 1/3 of the students don't really finish at all, 1/3 of the students finish but their programs have bugs (for example, on occasion, they may make an obviously bad move, or in Checkers they may fail to recognize a complex jump), and the final 1/3 of the students create programs that work and play well (but only a fraction of this final third use an appropriate heuristic to evaluate board positions such that their programs play as well as they should).

When such a project is assigned today, in my opinion, there is a fundamental decision that the instructor needs to make right away. One option is to have the students create programs that can compete against each other. One advantage of this option is that this makes working programs simpler to evaluate, and it provides some nice statistics at the end of the project. Also, if it is not the case that the instructor will actually want to play the programs personally, it takes away the need for the students to implement an interface. However, there are several disadvantages to this approach. First, it creates the need for the instructor or a TA to implement a program that will play the students' programs against each other. Second, it requires a standardization of students' programs; at the very least, they must all run on the same system. If some students are not familiar with the chosen system (or perhaps a specific programming language, which some professors require), they will be at an unfair disadvantage (most AI courses do not teach programming, and it is assumed that students taking the course are already proficient programmers). Furthermore, if there is no required interface, it is harder to evaluate programs with bugs. Finally, it is a less exciting project because students can not play against their own programs or have other people play against their programs.
The second choice, which is what I have done when I have taught courses in Artificial Intelligence, is to require students to implement the entire game, including an interface, using any language and under any operating system they desire (so long as it is common enough that I have access to it). This choice, too, carries certain disadvantages. First, a tournament between students' programs is not possible. Second, if the instructor is not a reasonably good player at the game in question, evaluation is difficult. (I think I have become reasonably proficient in both Checkers and Othello due to these projects!) Even if the instructor is good enough to objectively evaluate the programs, grading typically requires a lot of time and effort; I find that I need to play each program several times before I am confident. Third, each student either has to waste a lot of time implementing a graphical user interface (which has nothing to do with AI), or they need to rely on a text interface (which is less exciting and can make it annoying to play against the program).

Part II: An Ideal System

Imagine The Cooper Union AI Game Playing Server. I will first describe this system in its ideal form (or close to it) as I envision it. Then I will introduce various simplifications which should make it feasible for our class to implement the system in a single semester. The ideal system would really be more than just a server; it would actually consist of four separate components:

(1) A web-based registration system. This component would allow instructors at various colleges who are teaching AI courses to register their courses with the system. Each instructor would specify which of the supported games he or she is assigning in a given semester; initially, we would support two choices; namely, Checkers and Othello. Over time, the list of supported games could be expanded. The registration system would also allow students who are taking such courses to register as part of the course. Professors will have two passwords; one that they keep to themselves so that they can log on to or modify their accounts, and another that they give to their students so students can register for the class. When a student is ready, the system would allow students to upload executables. The student may implement the program using any programming language; we would not even know how the executable is created. Students would be able to create executables for any common operating system.
Registered students would also have two passwords; one that they keep to themselves so that they can log on to or modify their accounts, and another that they associate with their uploaded executables. Later, anyone who is given a student's username and second password could request to play against that student's program. This would invoke a graphical user interface, which needs to be downloaded the first time it is used (as will be discussed). Users of the system would also be allowed to specify that they want to watch two executables play against each other, or to have an executable play against itself; this would help students to debug their programs, or to test how two different versions of their programs with different heuristics fare against each other. Such requests would also invoke the GUI. Students would be allowed to upload more than one version of their executable, up to some specified limit, for the purpose of testing different versions of their program against each other.
Every time that a game is requested, the registration system would also have the responsibility of copying the executable (or multiple executables, if two are playing against each other) to an appropriate game playing machine (or to two game playing machines, if two executables compiled for different operating systems are playing against each other); there would be a separate game playing machine for each supported operating system. Each time an executable is copied, it would be given a unique path and filename combination, which needs to be provided to the user interface along with the identification of the game playing machine (and all of this information would, in turn, be sent by the user interface to the game playing server every time a move is requested from that program).
It is very important to understand that the executable that students would create in order to use the system would not be forced to implement an interface. The executable would accept, as input, the current state of a game, including whose turn it is, and also a time limit, in seconds, specifying how long it has to make the next move. (Some instructors may prefer that the executable accepts a depth level specifying how far down in a search tree it is allowed to search; I do not like this option for various important reasons which will not be discussed here.) The output of the program would be an indication of the selected move. This is all that an acceptable executables would do. The format for input and output would be decided by the developers of our system and must be adhered to by students who are using it. In return, these students would be gaining major advantages. They would not have to implement any interface; yet, as will be discussed, they will be able to play against their programs using a nice graphical user interface providing many useful features, and they would be able to have their programs compete against others in tournaments. The students would only have to worry about the AI fundamentals involved with game playing. Specifically, they would have to implement an intelligent search through a game space and a heuristic to evaluate positions in order to select the next move; in other words, they will only be concerned with the AI components of the game.

(2) A downloadable graphical user interface. For every supported game, our system will need to provide a graphical user interface (GUI) that runs on several different operations systems. Since the GUI would be coded in Java, it should theoretically not be a problem to make it platform independent. The first time that a user wants to play a game that a student has uploaded, he or she would be prompted to download the interface. As new games are supported by the system, newer versions of the interface would need to be downloaded. The web-based registration system would be able to detect the version number of the user's current system and prompt the user if a newer version is needed, or perhaps the download would happen automatically.
The user interface would communicate with a game playing server (discussed shortly). Every time that it is a program's turn to make a move in a game, the GUI would send a message to the server in order to request a move; this request would be in the form of a message indicating the game playing machine to which the executable was copied, along with the path and filename of the executable on that machine; the current position of the game, including whose turn it is; and the program's time limit, in seconds, to make the next move. The server would reply to the user interface after the program has made its move. A protocol for transmitting information would be decided by the developers of the system.
When it is the user's turn, the interface would track his or her mouse movements and mouse clicks. There are many ways in which a user might be allowed to specify a move. The specific method used by the system would be decided by the implementers of the GUI. Conceivably, newer versions of the interface could change the way that this is done, as it is independent of the rest of the system. The GUI would also provide certain additional features; for example, displaying legal moves, allowing the user to configure the board, allowing a user to take back a move, allowing a user to save the state of a game, etc. The available features could grow over time.
(3) A game playing server. This server would always be running. For each game being played the main game server would alternately be communicating with the graphical user interface and an executable that has been uploaded (or, more accurately, what I will call a mini-server on the game playing machine to which the executable has been uploaded; this relatively simple mini-server would in turn communicates with the executable). The system would include many game playing machines that could run the executables, including at least one with every common operating system. In addition to the one main game server that receives requests from GUIs, there would also be a mini-server running on each game playing machine.

Every time that the main game server receives a request from a GUI, a new thread would be spawned to handle the request. This new thread would pass on the request to the mini-server running on the appropriate game-playing machine; then the mini-server would spawn a thread, and this thread would invoke the appropriate game-playing executable. After the executable outputs its move, this move would be retrieved by the new thread of the mini-server and passed back to the new thread of the main game playing server; then a message would be sent to the appropriate GUI. The mini-server must also recognize when an executable does not make a move within its time limit, in which case an appropriate message would be sent to the main game server and then the GUI
I want to say an additional word on the uploaded executables, which would likely be stored on the same computer as the database used by the web registration system. Every executable would be copied to a different computer (one of the game playing machines) before it is used. This is one way that we would protect against viruses. If students at various schools were to upload executables with viruses, they would never be executed on the same machine as the server, database, or anything else important. Upon detection of the virus, we would erase the executable from our database, and we can take whatever punitive action we decide is appropriate (e.g., we may decide to not let students from that school register on the system). At worst, we would need to then reconfigure the specific game playing machine that was affected. Of course, this is not the only security measure that our system would employ. All game playing executables would be run with permissions that should not allow them to do anything damaging. Perhaps additional security measures would also be necessary.
If the system were to become popular, the server would potentially be communicating with many uploaded executables and many graphical user interfaces at the same time. This would involve spawning many different threads or processes on the main game server, one for each game; each thread would alternately communicate with one user interface and one copy of an executable (or a mini-server on the same machine as the executable). It is possible that several users may be playing against multiple copies of the same executable at the same time. For this reason, when an executable is copied to the machine where it will run, it would be given a unique name by the registration server.

(4) A tournament server. A tournament server would be able to pit all of the uploaded executables for a given game, or some specific subset of uploaded executables, against each other. The maintainers of the system would be able to configure the tournament server to specify when tournaments would be played and which programs will be involved in the tournament. They would also be able to specify the format of the tournament (e.g., round robin, elimination, etc.) For example, they might pit all of the programs uploaded from students in a particular class against each other, and generate rankings of these games. Another option would be to pit all programs ever submitted that play a certain game against each other. Eventually, the system might allow professors or students to specify the configurations of tournaments as well. The statistics generated by the tournament server could help instructors grade their students' programs.

The tournament server would need to communicate with various uploaded executables, perhaps at the same time (different games can potentially be played in parallel). It would also need to store gathered statistics in a database. Perhaps we would eventually allow AI enthusiasts or researchers who are not members of AI courses to upload game playing programs to see how they fare against others in tournaments. This might help researchers developing new state-of-the-art game playing techniques.
Part III: Simplifications
One of the biggest simplifications I am making to the system is that we will not implement a tournament server. In order for this component to be feasible and efficient, we would need some powerful servers and several game playing machines that can run many games without disabling the system. Also, this component is not as important as the others; the system can be used effectively without it. If the system consisting of the three other components works well enough, I will personally use it the next time I teach Artificial Intelligence. The tournament server would become more important if the system takes off and is eventually used by many schools around the world. If I am someday able to acquire funding to support the development and maintenance of such a system, this last component may be implemented at some time in the future.

Another major simplification is that we will be using one machine for almost everything. The ideal system would have separate machines for the code repository, the web-based registration system, the actual database, and the main game server, not to mention many machines used as game playing machines. The simplified system we will develop this semester will combine all of these things onto a single machine. This machine is a reasonably powerful server housed in my office and running Ubuntu, a popular Linux distribution. This simplification has several implications. For one, there will be no mini-servers, since there are no game-playing machines, and so threads spawned by the main game server will communicate directly with the game playing executables, which will run on the same machine as everything else. (This would not be feasible in the ideal system for many reasons, including robustness, efficiency, and security. For now, I am not so worried about security.)
Note that the web-based registration still needs to make copies of each executable being played, assigning a unique name to each copy. This is because it is still possible that multiple users will attempt to play against the same game at the same time. However, only the path and filename need to be passed to the GUI and then to the main game server; no indication of a game playing machine is necessary. When a GUI requests a move from a particular game playing program, a new thread must be spawned by the game server; this thread will communicates with the specified game playing executable and return the chosen move of the game playing program to the GUI. The thread must also recognize if the game playing program does not return a move within the specified time limit and return an appropriate message to the GUI if this happens.
In terms of the GUI, not all of the extra features mentioned for the ideal system need to be implemented. I think, at least, that the abilities to display legal moves and to configure the board should be implemented because these features are important both for testing the system developed in this class, and they would be important for students in AI classes to test their programs under various conditions. Each GUI group can decide on their own which other optional features to implement (e.g., the ability to take back a move or change the state of the game). Each GUI group can also decide how a user can specify a choice of move, since this choice is independent of the other components of the project (but the GUI should be user-friendly and simple to use).

Part IV: Groups

Our class will be divided into multiple teams. Each team will implement one of the first three components of the system; some components may be implemented by more than one team. As long as at least one team successfully implements each component, the overall system will work. Certain decisions - e.g., communication protocols between the GUI and the game playing server - will necessitate interaction between groups. (The protocol for communication between the GUI and game server needs to be decided upon. I will resolve disputed decisions. I will probably require that XML and SOAP are used.) Groups working on the same component are advised to keep their communications to a minimum; grades for each team may be influenced by how well their team succeeds compared to the other team working on the same component. In general, project grades will depend on largely on correctness (i.e., does the component work). It will also be based on documentation in the code (which we will handle using a specific Java utility), robustness (is the program bug free, and does it handle extreme cases), and expandability (especially important for this project, since additional features, supported games, and supported systems may need to grow over time as we approach the ideal system).
The three components of The Cooper Union AI Game Playing Server that will be implemented by the class involve different tools and programming skills. The web-based registration database is the only component that involves a web interface and the only component that needs to communicate with a database; we will use MySQL. The GUI is the only component that requires developers to implement a graphical user interface. The developers will need to learn how to track mouse movements and mouse clicks and respond appropriately; this is probably most easily accomplished using Java Swing. There will also be some network communication (with the game playing server), but it will be client-side communication. The GUI is also the only component of the system that needs to compute the legal moves of the game. The game playing server is the only component of the three that involves server-side network communicating. The server will have to spawn multiple threads, each of which is communicating with one GUI and one uploaded executable. The implementers of this component will also have to learn about configuring an Apache server and Tomcat. They will also have to determine a way to time the game playing programs and to automatically kill these processes when they exceed their time limits.
I will create various types of accounts for each group on the server that resides in my office. You will be able to log on to the server using SSH and you will be able to transfer files to the server using FTP. SSH and FTP access to the server are important for the web registration and game playing server groups, since these components will have to run on the server. Every student is required to set up his or her own development environment, and every student is required to use Eclipse, an integrated development environment (IDE). Your group's shared code will exist in a subversion repository on the server, but each student will have a checked out version on their development machine. Subversion will be used for version control (allowing multiple students to edit the same code). We will discuss Eclipse and Subversion in class.
