Data Structures and Algorithms I
Spring 2008
Programming Assignment #2
You are going to write a program that sorts the nodes of a linked list. Each program will load data from a file and create a linked list of pointers to data objects using the provided C++ list class. Each data object consists of six fields; five of the fields are signed integers, and the sixth is a C++ string. Let's name the integer fields i1…i5, and we will refer to the string field as a code. After creating the list, the program will sort the list according to rules specified below, and then it will output the sorted data into a new file. The input and output files will have the same format. The first row will be in integer indicating how many rows follow. Each row after that represents a single data object specifying the values of i1 through i5 and then the code; all fields will be separated by a single space, and each row will end with a single Unix-style end-of-line character ('\n').
The nodes in the linked list are to be sorted according to the integer fields. If two nodes have different values of i1, then this alone determines the order, with the lesser value coming first. If the two values of i1 are equal, then the values of i2 are used to order the nodes, with the lesser value coming first. Then the values of i3 are used, then i4, and finally i5. If all five values are equal, then the two nodes are considered to have the same key, and their order should not change. In other words, the codes of the nodes do not affect the sort order, and their orders should be maintained for nodes with all equal values; this implies that you need to use a stable sort. If two nodes contain equal values and also equal codes, they are indistinguishable, and the order does not matter.
I am providing you with code that handles most aspects of the program, and you may not make any changes to the provided code. This includes the implementation of a simple class to store the data objects, the file loading routine that loads the data from an input file, and the file saving routine that writes the sorted data to an output file. There is also a call to a sort routine that you must fill in. You may also write additional functions, and even additional class definitions, if you wish, but all added code must occur below a specific comment which indicates that the code above the comment may not change. (You should even be able to include additional provided header files below the comment. If you want to do this but your compiler does not support it, then include them at the top of the file, and mention this in your e-mail when you submit the program.) I will use the "diff" command to make sure you have not changed any code above the comment.

Your program will be tested on four test cases, which we will call T1…T4. For each of these test files, every code field will consist of exactly 5 randomly generated letters (both lowercase and capital letters will be included). The file formats will be as follows:
· T1 will contain approximately (within 1 percent of) 1 million data objects. The integer values will be 32-bit signed integers with 32 randomly generated bits.

· T2 will contain approximately 1 million data objects such that the integers among the data objects will only include two distinct values. The program that generates this file will randomly generate two 32-bit signed integers, and then will randomly choose between these two integers for each value written to each integer column of each row of the file. Of course, this file will necessarily contain many duplicate entries.

· T3 will contain approximately 1 million data objects that are in close-to-sorted order. The program that generates this file will randomly generate five starting values, which we will call s1…s5, that are randomly generated integers in the range from -10 million to positive 10 million. The nth data object will include the values s1+n+offn,1, …, s5+n+offn,5, where each offn,i is a randomly generated integer offset in the range from -3 to 3, inclusive. It can easily be reasoned, then, that each data object will start at most five positions from its eventual location in the sorted list.

· T4 will contain approximately 100,000 data objects. The integer values will be 32-bit signed integers with 32 randomly generated bits. This file will have the same general format as T1, except that it is shorter. A sample file with this format will be provided; it will not be the same T4 that will eventually be used to test your programs, but it will be generated by the same program.

Every working program will be assigned a score that is based on the CPU times that the program takes to sort each of the four test cases. If time1…time4 are the CPU times required by the program when tested on T1 through T4, respectively, the overall score for the program will be time1 + time2 + time3 + 10 * time4. Assuming that it works (i.e., it generates the correct output for all four test cases), your program will be graded almost entirely based on this overall score just described. I expect working programs, and you will lose a lot of points for incorrect output. I may take off up to a few points for poor formatting (which does not affect speed, since it is ignored by the compiler), but otherwise, you will not lose points for lack of elegance. Anything goes, so long as your write the program individually. You may use any provided classes or routines to which you have access, including the provided sort routine of the C++ list class, which is a stable sort, if you want to, but you will have to figure out how to use it, and I'm not guaranteeing that it is a good idea. If you wish, you may try to figure out which type of test file you are dealing with, and come up with different strategies for each. You don't really have to get that perfect – if you can determine that your code has less than a one in a million chance of guessing the format of file wrong, that is safe. (In general, if your output is not correct, and you can convince me that it was a fluke with less than a one in a million probability, I will generate new test data and run it again – but, of course, if you are wrong, the program will not get the second chance.) You may also try to deal with individual bytes of the data, if you so decide, but in this case, be careful – don't make assumptions about how the data within each object is stored, as it may differ from one compiler to another. Your program does not have to work for any test case that does not follow one of the above specifications.
Submit your program to me by e-mail. E-mail the code to me as an attachment sent to CarlSable.Cooper@gmail.com. I will compile all programs using the g++ compiler that is provided with cygwin and I will test the executable under this environment; no compiler optimization options will be used for any program.
Your program is due before midnight on the night of Friday, May 9. There's a lot of room for creativity with this assignment, so have fun with it!
