Data Structures and Algorithms I
Spring 2008
Homework #2
(1) For each of the following descriptions of something stored in memory as a program that was coded in C++ is running, state whether the memory is part of static memory, an activation record in the stack, or the heap (i.e., dynamic memory). For those entities that are stored in an activation record, state whether the memory resides in the first, second, or third section of the activation record, according to the breakdown discussed in class.

(a) A single integer that is part of a standard array of integers that is a local variable of a function

(b) A single double that is part of a vector of doubles that is a local variable of a function

(c) A single integer that is a static data member of a class

(d) A single integer that is a data member of an object that is a parameter of a member function of a class

(e) A temporary variable that is generated by the compiler in order to store a value used along the way when evaluating an expression that occurs somewhere in a function

(f) A single integer that is a local variable of a member function of a class

(g) A single character that is part of a C-style string, which has been allocated using the C++ new[] operator, that is pointed to by a pointer that is a parameter of a member function of a class

(h) A single character that is part of a C++ string if the string is a local variable of a member function of a class

(i) A single double that is part of a C++ vector of doubles if the vector is a global

(j) A single integer that is part of a standard array of integers that is a data member of an object that is a global variable

(k) The original value of a register that needs to be restored upon completion of a function

(2) For these questions, assume that the data structures have been implemented efficiently and that N is larger than M. All answers should be expressed using Big-Theta notation.
(a) M insertions are applied to a list. The list initially contains N elements and is implemented using a singly linked list. Each insertion specifies the value to be inserted and the previous node. What is the total, worst case running time of the M insertions?
(b) M insertions are applied to a list. The list initially contains N elements and is implemented using an array that is large enough to hold all of the elements. Each insertion specifies the value to be inserted and the previous node. What is the total, worst case running time of the M insertions?
(c) M pushes are applied to a stack. The stack initially contains N elements and is implemented using a singly linked list. Each push specifies the value to be added to the stack. What is the total, worst case running time of the M pushes?
(3) Answer the following questions concerning stacks and queues:
(a) Explain how a single fixed-sized array can be used to implement two stacks. Your solution should not consider either stack to be full unless the array is full. However, if the array is full, then pushes would not be allowed to either stack.

(b) Exercise 3.25, part (a) from the textbook: Propose a data structure that supports the stack push and pop operations and a third operation, findMin, which returns the smallest element in the data structure, all in O(1) worst case time.

(c) Exercise 3.27 from the textbook (reworded slightly): If the recursive routine used to compute Fibonacci numbers (covered in class as part of the previous topic) is run for N = 100, is stack space likely to run out? Why or why not?

