Artificial Intelligence

Spring 2005
Project #1

You are going to write a program that plays Othello (a.k.a. Reversi) against the user! You may write the program using any programming language that you wish, as long as I can read, compile, and run your code. We will discuss the rules of Othello in class, but it is up to you to make certain that you understand the rules exactly. If you do a Google search for "Othello rules", you will find many pages that describe the rules.

Othello is played on an 8 by 8 board that originally contains two black pieces and two white pieces. Black always moves first. You can represent the board however you like. An ASCII interface is fine (in which case you will obviously not really be using black and white pieces, but using characters to represent them). You may implement a graphical interface if you like, but you will not receive extra credit for that.

When the program starts, it should ask the user if he or she wants to be black or white. Your program must also prompt the user for a time limit! This time limit, expressed as an integral number of seconds, determines how long the program has to make each of its moves. For every move, before displaying the updated board, the program should output the amount of time spent searching for the current move.

On either player's turn (computer or human), if there are no legal moves for the player, that player loses their turn and the opponent moves again. If there is at least one legal move, a player is not allowed to pass their turn. If neither player has a legal move, then the game ends and the player with the most pieces of their own color wins. Most games will probably end when the entire board is filled. At the end of the game, the program should announce the winner (or that the game is a draw) along with the final score.

Your program must combine iterative deepening and an alpha-beta search (i.e. a minimax search with alpha-beta pruning), along with a heuristic function (a.k.a. an evaluation function) of your own construction, to search the game space and decide each of its moves. You may use other potential improvements as well if you wish (e.g. singular extensions), but this is not required. As previously stated, before updating the board, the program should announce how long it has spent searching for its move. You will lose points if any search takes longer than the specified time limit. If multiple moves are tied for the best, the program should choose between them randomly.
On the user's turn, the program should prompt the user for his or her move, giving the user an intuitive, simple way to specify the move. The program must check to ensure that the move is legal, and prompt the user again otherwise. The program must also give the user an option to list all of the legal moves!
You will have over four weeks to complete this project, and I will propose a time schedule to follow in class. I can not stress this enough: Get started early! This is a tough assignment. That being said: have fun with it!
