Data Structures and Algorithms I
Spring 2005
Programming Assignment #1
Write a program that asks the user for the name of a text file.  The text file should contain a list of commands, one per line.  Each command will direct the program to push a value onto a stack or a queue, or to pop a value from a stack or a queue.  (Some sources use the terms "enqueue" or "dequeue" for queues, but we will stick with "push" and "pop".)
To be valid, a command must follow a very specific format.  Each command must consist of two or three words separated by whitespace (tabs or spaces).  The line should have no leading or trailing whitespace before the first word or after the last word.  For the purposes of this assignment, a "word" is defined to be a sequence of characters other than whitespace.

The first word should either be "push" or "pop" exactly (all lowercase letters).

The second word should be the name of a stack or a queue; all stack names must begin with "s" and all queue names must begin with "q" (both lowercase).

If the first word is "push", there must be a third word representing an integral value (i.e. a positive or a negative integer).  If the first word is "pop", there must not be a third word.

Your program should read and process the commands in the text file.  After each line is read, your program should output the string "PROCESSING LINE: " followed by the text of the line.  There should be exactly one space after the ':' and before the text of the line.

If the line does not represent a valid command, the next line of the output should be the text "INVALID COMMAND!".

If the line is a valid "push" command, there should be no additional output.

If the line is a valid "pop" command, but the specified stack or queue is empty, the next line of the output should be "Attempting to pop from empty stack!" or "Attempting to pop from empty queue!" respectively.

If the line is a valid "pop" command and the stack or queue is not empty, the next line of the output should be "Value popped: " followed by the popped value.  There should be exactly one space after the ':' and before the value.  For this assignment, a "pop" is assumed to both remove and return a value from the stack or queue.
You should follow these instructions exactly, and your programs should not produce any additional output.  I am going to redirect your output for some test file into an output file and compare it to the output produced from my own program.  If there are differences, you will lose points for it.

Assume that the file commands.txt exists in the current directory and contains the following text:
push q1 50

push q1 100

     push s1234 7

push s1 50

push s1 100

push s99 9999

push s99 9999

pop s1 100

push noname 25

pop noname

pop s99

push s99 8888

pop s1

push s1 150

pop s99

pop s99

pop s99

push s1 200

pop s1

pop q1

push q1 150

push q1 200

pop q1

push stackack 100 200

pop s1

pop s1

push silly

pop q2

pop q2

push q2 -300

pop q2

pop q2

Then a sample run of your program might look like this:

Enter name of input file: commands.txt

PROCESSING LINE: push q1 50

PROCESSING LINE: push q1 100

PROCESSING LINE:      push s1234 7

INVALID COMMAND!

PROCESSING LINE: push s1 50

PROCESSING LINE: push s1 100

PROCESSING LINE: push s99 9999

PROCESSING LINE: push s99 9999

PROCESSING LINE: pop s1 100

INVALID COMMAND!

PROCESSING LINE: push noname 25

INVALID COMMAND!

PROCESSING LINE: pop noname

INVALID COMMAND!

PROCESSING LINE: pop s99

Value popped: 9999

PROCESSING LINE: push s99 8888

PROCESSING LINE: pop s1

Value popped: 100

PROCESSING LINE: push s1 150

PROCESSING LINE: pop s99

Value popped: 8888

PROCESSING LINE: pop s99

Value popped: 9999

PROCESSING LINE: pop s99

Attempting to pop from empty stack!

PROCESSING LINE: push s1 200

PROCESSING LINE: pop s1

Value popped: 200

PROCESSING LINE: pop q1

Value popped: 50

PROCESSING LINE: push q1 150

PROCESSING LINE: push q1 200

PROCESSING LINE: pop q1

Value popped: 100

PROCESSING LINE: push stackack 100 200

INVALID COMMAND!

PROCESSING LINE: pop s1

Value popped: 150

PROCESSING LINE: pop s1

Value popped: 50

PROCESSING LINE: push silly
INVALID COMMAND!

PROCESSING LINE: pop q2

Attempting to pop from empty queue!

PROCESSING LINE: pop q2

Attempting to pop from empty queue!

PROCESSING LINE: push q2 -300

PROCESSING LINE: pop q2

Value popped: -300

PROCESSING LINE: pop q2

Attempting to pop from empty queue!

I suggest implementing this program using a linked list of stacks and queues.  In other words, each node in the link list will serve as a header node for a stack or a queue.  These structures should likely contain at least the following information:

· The name of the stack or queue

· A pointer to the first node in the stack or queue

· A pointer to the last node in the queue (you probably don't need this for a stack)

· A pointer to the next header node in the linked list

You may also want to include other fields; e.g. I have an integer used as a boolean which is true for a queue and false for a stack, although you can also determine this information from the name of the stack of queue.

The structure used to store nodes in the stacks and queues should be simpler.  In my program, each such node stores an integer value and a pointer to the next node.

When reading lines from the specified text file, I suggest using the "fgets" function to read one line at a time, and then the "sscanf" function to process the line.  The "sscanf" function is similar to "scanf" and "fscanf", but its first parameter is a string and the values to be read come from that string.

Your program may not assume any maximum number of stacks or queues, and it may not assume a maximum size of a stack or queue.  Whenever it allocates memory for a node or header, it should of course check to see if "malloc" (or whatever function you use) returns NULL; if the program runs out of memory, it should indicate an error message and exit.

If the specified input file can not be opened or does not exist, your program should output an error message and exit.

You should use functions effectively to make your program easier to code, debug, and read.  You will lose points if you do not use functions well.

The time it takes to do a push or pop should be O(M) where M is the total number of stacks and queues.  Once the header for the appropriate stack or queue is found (which can be done using a linear search through the linked list), the push or pop itself should be a constant time operation.  (You could make the average case for the operation nearly constant time overall once you learn about hash tables!)

Your program must be written in C, and it must compile using "gcc" on either magnum or robin.

Submit your programs to me by e-mail.  E-mail your programs to me as an attachment sent to sable2@cooper.edu.  Your program is due before midnight on the night of Sunday, March 20.
