Data Structures and Algorithms I
Spring 2005
Homework #3
(1) Answer the following questions about trees: (40 points)

(a) Suppose you are given the preorder traversal of a tree, the postorder traversal of the same tree, and the inorder traversal of the same tree; you may assumed that all values are unique. Describe an algorithm that determines whether or not the node with value i is an ancestor of the node with value j. Explain your answer!
(b) Exercise 4.44 from the textbook: Suppose we want to add the operation FindKth to our repertoire. the operation FindKth(T, i) returns the element in tree T with the ith smallest key. Assume all elements have distinct keys. Explain how to modify the binary search tree to support this operation in O(log N) average time, without sacrificing the time bounds of any other operation. Explain your answer!
Note: Although it might sounds like this gives a selection algorithm with O(log N) average time, remember that if your data is stored in an arbitrary order in an array, it would require Ω(N log N) time to create the modified binary search tree.

(c) Consider a path from the root to a leaf in a binary search tree. Assume that v1 is the value of a node to the left of the path, v2 is the value of a node on the path, and v3 is the value of a node to the right of the path. Is it necessarily true that v1 < v2 < v3? Explain your answer!
(2) Exercise 7.33 from the textbook: (20 points)
a. Prove that any comparison-based algorithm to sort 4 elements requires 5 comparisons.
b. Give an algorithm to sort 4 elements in 5 comparisons.
(3) Exercise 7.31 from the textbook: (20 points)
Suppose you have an array of N elements containing only two distinct keys, true and false. Give an O(N) algorithm to rearrange the list so that all false elements precede the true elements. You may use only constant extra space.

Note: Maintaining a count that might increase as high as N would require log N bits, and this would not be considered constant extra space.

(4) Answer the following questions about radix sort: (20 points)
Assume you are dealing with an X-bit computer (i.e. a computer in which integers are stored in X-bit variables); on typical, modern day computers, X might be 32 or 64. Express your answers for parts (a) through (c) in terms of X when appropriate.

(a) What is the smallest number of bins (a.k.a. buckets) that would make sense for radix sort?

(b) How many passes would radix sort with the number of bins from part (a) require?

(c) How many bins would be required to make radix sort identical to bin sort (a.k.a. counting sort or bucket sort)?

(d) Would it be a good idea to use the number of bins from part (c)? Why or why not?

(5) Answer the following questions about sorts we have covered: (20 points)
(a) Choosing the middle element as a pivot for quicksort is enough to make quadratic running time very unlikely. Why is median-of-three partitioning often used instead?

(b) If Shellsort is applied to a sorted array using the increment sequence 1, 2, 4, ..., 2k, where 2k is the highest power of 2 less than N (the number of elements), what is the running time of Shellsort (expressed using the tightest possible big-Oh notation)? Explain your answer!
(c) If mergesort is applied to a large sequence of integers, is there any particular ordering of the data that would make its run time noticeably longer or shorter than the average? Explain your answer!

