Data Structures and Algorithms I
Spring 2005
Homework #2
(1) Consider the following expression written using infix notation: (25 points)
((a + b) * (c - d + e)) / (f + g * h)

Show what the stack and current output would look like after every step (i.e. after each symbol is processed) using the algorithm covered in class to convert infix to postfix (extended to include subtraction and division).
(2) Briefly answer the following questions concerning lists: (25 points)
(a) For the general list ADT, name one advantage of an array implementation over a linked list implementation, and name two (completely distinct) advantages of a linked list implementation over an array implementation.
(b) How many and which of the three advantages mentioned in part (a) are maintained by a cursor implementation of a list?

(c) For any linked list implementation, name an advantage and a disadvantage of including header nodes.
(3) Answer the following questions concerning stacks and queues: (50 points)
(a) How can a single array be used to implement two stacks? Each stack should only be considered full if the entire array is filled, and no extra memory overhead should be used.

(b) Could the same solution be used to implement two queues while still maintaining constant time push and pop operations?

(c) How can a stack be implemented using two queues? Explain a solution that maintains a constant time pop operation but allows a linear time push operation (with respect to the number of elements in the stack).

(d) Exercise 3.22, part (a) from the textbook: Propose a data structure that supports the stack push and pop operations and a third operation, findMin, which returns the smallest element in the data structure, all in O(1) worst case time.

(e) Exercise 3.24 from the textbook: If the recursive routine used to compute Fibonacci numbers (covered in class as part of the previous topic) is run for N = 50, is stack space likely to run out? Why or why not?

