Artificial Intelligence

Spring 2004

Project #2: Text Categorization
Your assignment is to write a text categorization system. Text categorization is an NLP task that is generally achieved using machine learning approaches. We will cover some relatively simple methods in class that can achieve good results for the types of categories we will be dealing with. You are free, however, to implement your system in any way that you choose!

Your system should take from the user two arguments, each representing the name of a file. The first file will contain a list of labeled training documents. Each row of the file will list the exact path and filename of the corresponding training document followed by a single space and then a category label for the document. The second file will contain a list of test documents. Each row will consist of a single string representing the exact path and filename of the corresponding test document. Your program should produce, as output, a file called "predicted.labels" in the directory from which the program is run. That file should list the test documents along with their predicted labels. Each row of the file should start off with an exact match of the corresponding row from the second provided file, followed by a space, followed by the predicted label for the document. Your system should assume that the set allowable categories are mutually exclusive and exhaustive (i.e. every document belongs to exactly one category).
I am providing you with one entire corpus, including a training set and a test set. This corpus involves the categorization of news documents into the categories: Pol (Politics), Str (Struggle), Dis (Disaster), Cri (Crime), or Oth (Other).

The two files your system will need are:
/home/s/sable2/ee459/corpus1/train.labels

/home/s/sable2/ee459/corpus1/test.list

All of the documents specified in these two files should be readable to you.

I am also providing you with the correct labels of these test documents in the following file:

/home/s/sable2/ee459/corpus1/test.labels

If your predicted.labels file matches this test.labels file, it means your text categorization system has performed perfectly, much better than any actual system (or humans for that matter)! Performance can be measured using overall accuracy or precision, recall, and F1 measures for individual categories. I will provide you with a script that compares two files of this format and displays the appropriate accuracy measures.

In addition, you can find the training sets for two additional corpora within the following directories:

/home/s/sable2/ee459/corpus2

/home/s/sable2/ee459/corpus3

The corpus2 tree contains a corpus involving the categorization of images based on the first sentences of their captions into the categories: I (Indoor) or O (Outdoor).

The corpus3 tree contains a corpus involving the categorization of news documents into the categories: Wor (World News), USN (U.S. News), Fin (Finance), Ent (Entertainment), Spo (Sports), or Sci (Science and Technology)

I will test your systems on these corpora as well. However, I am not providing you with the test sets! You can estimate how well your system will perform by using part of the training set as a tuning set, or by using cross-validation. Your grade for this project will largely depend on how well your system performs on the test sets for these corpora.
A user-friendly text categorization system should not assume specific categories, it should base them on the training set that it is provided. However, you may assume that your system will only be used for these sets of categories, and you may hardcode them into your system if you wish.
Your project may be written in any language, but it must compile and run on magnum or robin, since your program will need to access the files from those systems!

If you e-mail me your program early, I will test it on these data sets and let you know the performance. You will then have an opportunity to improve your system and resubmit if you are not satisfied!

When you e-mail me your final project, I would also like a short (approximately one page) writeup describing the choices you made for your system. For example, what basic approach did you implement? How does your system tokenize files? Did you perform any experimentation involving various possible alternatives? Also include anything else you feel like mentioning.
