Embedded Control Problems, Thumb,
and the ARM7TDMI

Simon Segars

Keith Clarke

Liam Goudge

Advanced RISC Machines

22 |EEE Micro

High-end embedded control applications such as cellular phones, disk drives, and modems
demand more performance from their controllers yet still require low costs. By
implementing a second, compressed instruction set, our architectural innovation Thumb
reduces RISC code size, providing 32-bit RISC performance at 8-/16-bit system cost. We
describe the problems of embedded control, discuss the Thumb solution and its
implementation, and explore typical application areas and competitive benchmarking.

esigners of embedded control systems
face many problems. Cost is almost
always a prime concern since con-
sumer markets such as mobile phones
are fiercely competitive. In addition, ensuring
speedy time to market means engineers must
avoid complex design-in problems. For these rea-
sons, 4-, 8-, and 16-bit microcontrollers still dom-
inate the embedded control market, with over 1.2
billion 4- and 8-bit micros shipped in 1994,
(Source: The Information Architects, Mar. 1995.)

However, many applications now require
much more performance than simple 8- and 16-
bit micros can offer due to demand for additional
features in existing products such as in video
recorders. Also, today’s demand for portability’
makes power consumption an important new
design criteria; many 8- and 16-bit micros were
not designed with power consumption in mind.

Cost is partly being reduced through integra-
tion: Yesterday’s discrete solutions are today
being integrated into single ASICs. This imposes
a size limitation on the microprocessor, which
must be small enough to fit in an ASIC and still
leave room for the other system functions.

The ideal embedded control processor is thus
one that is small and easy to integrate, easy to
design with, features low power consumption to
enhance battery life, and yet still provides
enough performance for tomorrow’s products.

CISCs or RISCs?

RISC processors? represent the way forward

for embedded controllers in all of these areas, as
conventional CISC processors are currently run-
ning out of performance. CISC complexity led to
physically large chips that, once embedded in
ASICs, left little room for anything else. Also, their
high power consumption® reduces a product’s
battery life in portable applications. High levels
of power consumption also lead to heat dissipa-
tion problems that require expensive packaging
and heat sinks to solve.

RISC processors offer much higher levels of
performance and can be made small enough to
allow integration into complex ASICs. The draw-
back of most RISC processors, however, is code
density. In many cost-critical applications, one
of the most expensive system components is
memory. Therefore, the less memory a program
occupies, the better. CISC processors do well in
this area. However since RISC processors have
simple instructions, many of them may be need-
ed to perform what may be done in a single CISC
instruction.

Code inefficiency also impacts system power
consumption. External memory accesses are cost-
ly in terms of power since an address bus must be
driven, RAM cycled, and resulting instructions dri-
ven back to the processor. Single, complex CISC
instructions may be implemented in multi-instruc-
tion RISC routines, increasing the number of mem-
ory accesses and system power consumption.

The ideal processor for embedded control is
thus a small, inexpensive, simple, low-power
RISC, with good code density. The current ARM7

0272-1732/95/$04.00 © 1995 IEEE

line of 32-bit RISC microprocessors meets all these criteria
with the possible exception of code density. (See Furber for
more information on these microprocessors.*) Though ARM7
products outperform other RISCs and many CISCs in this
area, the designer looking to upgrade from a simple 8-bit
micro often finds the extra memory expense too great. We
therefore had to address code size.

Thumb solution

Our designers developed a new instruction set architecture
called Thumb, which specifically addresses the code densi-
ty issue. It contains a subset of 36 instruction formats drawn
from the standard 32-bit ARM instruction and recoded into
16-bit-wide opcodes. A small amount of logic added to the
basic ARM7DMI macrocell decompresses these 16-bit
instructions to their 32-bit ARM equivalents in real

instructions using a three-stage pipeline with fetch, decode,
and execution cycles. The low and high phases of the clock
control each cycle so that two functions typically occur with-
in each cycle. Since the ARM instruction decoding takes place
in the second phase of the decode cycle, we could position
the Thumb decompressor in the spare first phase. This
ensures that the single-cycle decode stage is maintained and
the maximum operating frequency has not been compro-
mised. See Figures 1 and 2.

In Thumb state, the output of the Thumb decompressor is
multiplexed onto the input of the ARM instruction decoder
and internal instruction bus. Thus, the Thumb instruction
expands into the equivalert ARM instruction, allowing the
execution stage to continue as normal.

time. The reconstituted 32-bit ARM instruction then FetChé Phase 1 Dec:ode Phase 2 gExecute
executes as normal. The net result of compressing :) ' Multivlexer ;
code in this way is typically a 30 percent improve- 32-bit data ; utiplexs Instruction
ment in code density over native ARM code. : ; ' bus >
The ARM7TDMI }| Multiplexer :

Equipped with the Thumb instruction decompres- 16 ; '
sor, the ARM7TDMI macrocell core can execute both ! 16) Th“m,b E) '
the ARM and Thumb instruction sets while still retain- e instruction |, .‘ Multiplexer | Execute
. o . ! decompressor| :
ing all of the processor’s qualities of high performance, ; : > _ Arm_ |:control
low power, and small die size. ARM7TDMI also con- : ; "Ijs"“‘g'on —»
tains debugging features (an EmbeddedICE macrocell ' All] > ecoder :
containing two fully configurable watchpoint/break- : -

' * Thumb state '

point registers; see later debugging section) and a mul-

tiply unit producing 64-bit results for digital signal
processing applications.

Figure 1. Instruction flow through the decode stage of the

ARM7TDMI pipeline.

Instruction decompression

The macrocell’'s major functional-
ity change to support the Thumb
instruction set is the addition of the
instruction decompressor. Each 16-
bit Thumb instruction has a directly
equivalent 32-bit ARM instruction

— |

Example: ADD rd, #Constant

15 Thumb code 0

l 001 I 10 [Rd I 8-bit immediate |

— |

: . Major opcode :
that has prec.1§ely the same archi jenoting } 3 Minor opcode Destination and Immediate
tectural definition. Rather than pro- move/compare/add/sub denoting ADD source register value
vide a completely new instruction with immediate value
decoder for the instruction set that |] | '
would act in parallel with the exist- 31 [I 1] 0

ing ARM decoder, ARM7TDMI
implements a serial decompressor.

|J110 ! 00]1 | 0100 I 1 | 0 Rd l 0 Rd l 0000 8-bit immediate |

The decompressor performs a direct

translation from the 16-bit instruc-

tion to the 32-bit ARM instruction.
Like its predecessors, the

ARM code

ARM7TDMI core achieves single-
cycle throughput for all simple

Figure 2. Expanding a Thumb ADD instruction into its ARM equivalent.

October 1995 23

Condition

code flags (Reserved)

Control bits

pression is key to the small size and

[I Rl
31 30 29 28 27 26 25 24 23 _._ 8 7 6 5

l low power consumption of the

4 3 2 1 0 Thumb decompressor.

zfelvl T[T/ TiIelr

M4 l M3 | M2 l Mt IMO] Switching between states

——— Overflow
Carry/Borrow/Extend
Zero

Negative/Less than

A Thumb-aware processor can exe-
cute both Thumb and original ARM
instruction sets. Programmers make
this choice via a state bit in the cur-
rent processor status register (CPSR)
known as the Thit. Figure 3 displays

Mode bits
State bit

- FIQ disable
IRQ disable

Figure 3. ARM7TDM I status register layout.

System/

user FiQ Supervisor Abort

IRQ

the new layout of this register.

To switch between states, we
added a new instruction to the ARM
instruction set. This is one of the
ways in which ARM7TDMI differs

Undefined from mixed instruction set micro-

RO RO RO RO

RO processors.,Code may be compiled

R1 R1 R1 R1

as either native ARM code or Thumb

R1 code on a function-by-function basis.

R2 R2 R2 R2

R2 In addition, since the ARM and

R3 R3 R3 R3

Thumb instruction sets are separate

R3 rather than mixed, implementation is

R4 R4 R4 R4

R4 easier. We Simply added the Thumb

R5 R5 R5 R5

decompressor to make the ARM7

R5 core Thumb aware; this enabled the

R6 R6 R6

silicon area to be kept small and

R7 R7

hence maintains low-power and
high-MIPS/W (million instructions

SP), SP_abt

per second/watt) performance.

LR \ LR_abt

Some other processors use a bit in
the instruction to distinguish be-

PC PC

tween instruction sets. This allows

instructions within a function to be
mixed between the two instruction
sets but has the drawback of less

CPSR CPSR

CPSR

space in the instruction field for the
instruction itself. In a 16-bit encod-

%SPSR_SVC %gpsn_abt

INSPSR_irq

\ SPSR_ud ing scheme, this is a serious draw-

(b)
Banked register

back since the richness of the
instruction set is limited.

. Thumb instruction set

Figure 4. Programmer’s model (a) with Thumb state program status registers (b).

Since only branches can be conditionally executed in the
Thumb instruction set, we placed the Always condition in the
expanded instruction’s upper nibble. A simple lookup table
produces major and minor codes, selected registers are zero
extended into the 4-bit fields, the immediate value transfers,
and a zero rotation value is inserted. This simplicity of decom-

24 IEEE Micro

In defining the Thumb instruction
set in 16 bits, we made some trade-
offs. Conditional execution is not sup-
ported since spending 25 percent of
the instruction space on the condition code would not have
left enough space for a useful mix of instructions. Thumb code
tends, as a result, to look much more like conventional assem-
bler with compares followed by short branches.

The other compromise made was in access to the register
bank. ARM code has free access to 16 registers at once and

uses three or four operand instructions with 4-bit register
specifiers. Again, to allow enough opcode space, we per-
mitted free access to only eight registers. Instructions consist
of the more conventional two or three operands and use 3-
bit register specifiers. This has the hidden benefit of simpli-
fying the migration to ARM assembler for programmers’
accustomed to typical 8-bit assembly languages.

A typical ARM 3-operand instruction is

ADD RO,R1,R2 ;RO=R1+R2

A typical Thumb 2-operand
instruction is

ADD RO, R1 ;R0O=RO+R1
Move and add instructions permit
restricted access to the rest of the
registers. Figure 4 shows the pro-
grammer’s model.

We limited the flexibility of
other instructions (see Table 1) to
their most common occurrences
so they would fit into the allocat-
ed 16-bit Thumb instruction space.
For example, data processing
operations with one of the oper-
ands shifted are not available
when in the Thumb state. To over-
come this, we defined dedicated
shift instructions such as

ARM instruction:
ADD RO, R1, R2, LSL #3

Thumb sequence:

MOV- RO, R1
LSL R2, R2, #3
ADD RO, R2

Decompressed ARM instructions:

MOVS RO, R1
MOVS R2, R2, LSL #3
ADDS RO, RO, R2

In this example, the 32-bit ARM
ADD instruction, which would
execute in a single cycle, has
been converted into three 16-bit
Thumb instructions, taking three
cycles to execute. Other instruc-
tions fare much better by conver-
sion into Thumb code. For

example, MOV RO, #0 occupies 32 bits in ARM and 16 bits
in Thumb and takes a single cycle to execute in both cases.
Generally, over a whole program, more Thumb instruc-
tions are required to execute a given function leading to a
performance loss. However, since each Thumb instruction
only occupies half the space, there is a significant net gain
in code density. .
. What is more, since a Thumb-aware processor can execute
both Thumb and ARM instruction sets, programmers can make
trade-offs between performance and code density on a func-
tion-by-function basis. In typical embedded control code, one

Table 1. Thumb instruction set.

Title Instruction Example ARM-code equivalent
.ADC Add with carry ADC Rd,Rs ADCS Rd,Rd,Rs

ADD - Add ADD Rd,Rs,Rn ADDS Rd,Rs,Rn

AND AND AND Rd,Rs ANDS Rd,Rd,Rs

ASR Arithmetic shift right ASR Rd,Rs MOVS Rd,Rd,ASR Rs

B Unconditional branch B Label B Label

BCC Conditional branch BCC Label BCC Label

BIC Bit clear BIC Rd,Rs BICS Rd,Rd,Rs

BL Branch and link BL Label BL Label

BX Branch and exchange BX Hs BX Hs

CMN Compare negative CMN Rd,Rs CMN Rd,Rs

CmpP Compare CMP Rd, #offset8 CMP Rd, #offset8

EOR EOR EOR Rd,Rs EORS Rd,Rd,Rs

LDMIA Load multiple LDMIA Rb!,[Rlist] LDMIA Rb!,[Rlist]

LDR Load word LDR Rd,[PC,#Imm] LDR Rd,[PC,#Imm}

LDRB Load byte LDRB Rd,[Rb,Ro] LDRB Rd,[Rb,Ro]

LDRH Load halfword LDRH Rd,[Rb,#imm] LDRH Rd,[Rb,#mm]

LSL Logical shift left LSL Rd,Rs,#offset5 MOVS Rd,Rs,LSL#offset5

LDRSB Load sign-xtd byte LDRSB Rd,[Rb,Ro] LDRSB Rd,[Rb,Ro]

LDRSH Load sign-xtd halfword LDRSH Rd,[Rb,Ro] LDRSH Rd,[Rb,R0] -

LSR Logical shift right LSR Rd,Rs MOVS Rd,Rd,LSR Rs

MOV Move register MOV Rd, #offset8 MOVS Rd #offset8

MUL Multiply MUL Rd,Rs MULS Rd,Rs,Rd

MVN Move NOT register MVN Rd,Rs MVNS Rd,Rs

NEG Negate NEG Rd,Rs RSBS Rd,Rs,#0

ORR OR ORR Rd,Rs ORRS Rd,Rd,Rs

POP Pop registers POP {Rlist} LDMIA R13!,{Rlist}

PUSH Push registers PUSH {Rlist} STMDB R13!,{Rlist}

ROR Rotate right ROR Rd,Rs MOVS Rd,Rd,ROR Rs

SBC * Subtract with carry SBC Rd,Rs SBCS Rd,Rd,Rs

STMIA Store multiple STMIA Rb! {Rlist} STMIA Rb! {Rlist}

STR Store word STR Rd,[Rb,Ro} STR-Rd,[Rb,Ro]

STRB Store byte STRB Rd,[Rb,Ro] STRB Rd,[Rb,R0]

STRH Store halfword STRH Rd,[Rb,Ro] STRH Rd,[Rb,R0]

SWI Software interrupt SWi value8 SWi value8

SUB Subtract SUB Rd,Rs,Rn SUBS Rd,Rs,Rn

TST Test bits TST Rd,Rs TST Rd,Rs

October 1995 25

MCLK _

nMREQ
SEQ

Figure: 5. shows an example of a
word read from an 8-bit memory
where the memory controller stalls
the processor for the first three cycles

A[31:0}

using nWAIT and controls BL[3:0] to

nWAIT

load the data byte by byte.
The ARM instruction set is much
richer than the Thumb set, and so

D[7:0]
D[15:8]

M
U

usually fewer ARM instructions are
required to perform a-given task.

M
L

When running from ideal 32-bit

D[23:16])

D[31:24]

memory, ARM code will almost
always outperform Thumb code.

.
3|

However there are two circum-

BL[3:0]

stances in which Thumb code can

outperform ARM code. These speed
increases are in addition to the sav-

Figure 5. Word reads from 8-bit memory.

or two routines may be critical to performance. These routines
should be compiled as ARM code, and the rest of the applica-
tion compiled as Thumb code. The resulting code therefore
takes full advantage of the code density offered by Thumb and
the performance of the underlying ARM processor.

Narrow memory

An important factor in the overall cost of an embedded sys-
tem is the width of the system data bus. When a processor
core such as the ARM7TDMI is integrated. into an ASIC, the
width of the external bus may determine the number of pins
on the package chosen. Using a 16-bit bus instead of a 32-bit
bus may mean the difference between using an inexpensive,
commonly used package and moving up to one that not only
is more expensive but also requires more circuit board area.

Other benefits to using a narrower system bus can be just
as important. Some types of memory devices are sold in 8-
or 16-bit-wide configurations. Having to provide 32-bit-wide
data to the processor directly from the memory may demand
the use of two parts even though one could have sufficed.
If a narrower memory is selected, a word read will require
multiple read cycles and extra latches to hold the data until
the final portion has been fetched, all adding to system cost.

The ARM7TDMI macrocell helps alleviate the problem of
narrow memory systems by providing four signals to control
directly the enables of each of the 4-byte latches, which hold
data loaded from the 32-bit processor.data bus. The ARM7
processor core already contained these latches, so we found
it relatively simple to split each latch into four parts and allow
the latch enables to be controlled externally. This reuse of
existing circuitry helps maintain the very small die size of the
ARM7TDMI while letting us remove circuitry that otherwise
would have been required in the memory system data path.

26 IEEE Micro

ing achieved in code density.

The first case is when the memory
width is 16 bits or less and the code
sequence is dominated by instruction fetches or data access-
es that are mostly less than word width. In a 16-bit memory
system, although there may be 30 to 40 percent more Thumb
instructions to fetch from memory, each instruction requires
half the number of memory accesses to load when compared
with ARM instructions. By running benchmarks on compiled
code in a 16-bit-wide memory system, we have shown that
Thumb code could perform up to 50 percent faster than the
equivalent ARM code.

The second situation in which Thumb code may outper-
form ARM code is, ironically, in a 32-bit memory system. In
this case though, the benefit is only seen when the memory
is slow and takes multiple wait states for each memory
access. The memory controller can use ARM7TDMTI’s inter-
nal latches as a one-instruction prefetch buffer when Thumb
instructions are being fetched, so that the second instruction
does not need an extra memory access.

When the first Thumb instruction is fetched from a word-
aligned address boundary, the memory access often returns
the next 16-bit instruction in the other halfword of the data
bus during the same cycle. The Byte Latch control signals
can ensure that the core latches all 32 bits even though only
16 bits are required for this fetch. On the next cycle, the
processor may require a sequential memory access. Then,
the memory controller can allow the processor to continue
immediately—since the data is already in the instruction
latch—without performing another mgmory access. Figure 6
shows a typical sequence of such cycles and the use of
BL{3:0] and nWAIT to control the processor timing.

If the memory takes Ncycles to provide one 32-bit value,
two simple Thumb instructions will have a throughput of N
+ 1 cycles, whereas two simple ARM instructions will require
2N cycles. The benefit will only be realized when Nis large

enough to cancel out the effect of

the extra Thumb instructions typi- MCLK
cally required for a task. nMREQ
Software tools SEQ
Since Thumb-aware cores can
execute ARM instructions, all exist- TBIT
ing ARM software continues to run MAS[1:0] Halfword request
on Thumb cores. However, to I I
exploit fully the Thumb and ARM A[31:0] Start address 12
instruction sets, we significantly
extended the ARM software tools. nWAIT \ [-
We developed a new compiler,
assembler, and linker to work with ~ D[31:0] {_}
the two instruction sets. These tools e e oscassrsas N
allow the user to compile routines as BLs:0l 1 5 | fXF l |x 0 Ix‘ : | i
either ARM or Thumb instructions

and to build an executable. This is
known as interworking.

The Thumb C compiler (tcc) com-
piles ANSI C to 16-bit Thumb instruc-
tions and may be used in conjunction with the standard ARM
C compiler to allow code written for Thumb to call ARM code
and vice versa.

The Thumb assembler can assemble either ARM or Thumb
code. It allows mixing of ARM and Thumb instructions in
source files via the new directives (CODE16 and CODE32),
which switch between 16-bit Thumb and 32-bit ARM opcode
translation.

The enhanced ARM linker supports both ARM and Thumb
object types. Designers can freely mix ARM and Thumb rou-
tines in an application, allowing trade-offs of code size against
performance. They can link objects across the fragmented
memory maps common to many embedded applications.

Debugging support is provided by a full windowing debug-
ger on Microsoft Windows platforms and by a command line
debugger on Unix, Macintosh, and DOS. These tools provide
full C-source or assembler-level debugging. ARM's debuggers
can either debug code running on an instruction-accurate
simulator (ARMulator) or on target hardware. Target hard-
ware debugging support through ARM’s EmbeddedICE IEEE
Std 1149.1 JTAG)® debugger is transparent. .

ARMulator can be used to benchmark and develop code
prior to the creation of target hardware. Users can configure
the simulator to emulate target hardware with fragmented
memory maps of differing speeds. When using the simula-
tor in conjunction with ARM’s C profiling tool, designers can
choose optimal memory configurations that incorporate the
three critical factors of speed, space, and memory cost.

Debugging
As systems become more complex and the level of inte-
gration increases, the problem of debugging development

Figure 6. Typical cycle sequence using BYTE LATCH controlsignals.

Debugging .
host Host running ARMsd
\ Protocol
converter
\ i Development
Detgt:ggtmg system containing
ARM7TDMI
Figure 7. ARM debug route. .

systems grows. To solve this problem, we introduced a com-
bined hardware and software solution to embedded debug-
ging. There are three components to the system: a symbolic
debugger rurining on a debug host (such as a personal com-
puter), a protocol converter, and a debug-compliant ARM
processor. Figure 7 shows this system.

At the top of the system is the symbolic debugger, ARMsd.
It allows the user to set breakpoints (on instruction fetches)
and watchpoints (on data loads and stores), and examine
and modify the state of the processor and memory. This is
done in a high-level manner independent of the target being
debugged. The target may be either a chip such as
ARM7TDMI or the ARMulator software instruction emulator.

At the bottom of the system is a debugging-compliant ARM
processor such as ARM7TDMI. This processor contains inte-

October 1995 27

Scan chain 2 Scan chain 0
g 1
EXTERN1—»{ EmbeddedICE
EXTERNO—{ macrocell
nOPC p
nRW - 4 ‘ ‘
MAS[1:0] th
nTRANS <= + Core <@ Other
nMREQ ‘
Al31:0] — Scan chain 1
D[31:0] = P
Wl
| TAP controller

|
% § Fy

TCK TMS nTRST TDI TDO

signals

pipeline via scan chain 1 and clock the processor by
moving into a particular state of the state machine. The
user can scan in store instructions, which will cause the
contents of the registers to be written into the scan
chain and then scanned out.

Scan chain 1 is 33 bits long, 32 bits of data plus one
control bit. When an instruction is scanned in and the
control bit is low, the instruction executes under con-
trol of the debugging clock, and any data transfers to
and from the scan chain. This is termed a debug speed
instruction. When the control bit is high, before exe-
cuting the instruction, the processor first synchronizes
back to the memory clock, and data transfers to and
from the memory system. At the end of the instruction,
the processor isolates itself from the memory as before
and returns to the debugging clock’s control. This is

Figure 8. ARM7TDM core with Debug and EmbeddedICE macro-

cell extensions.

grated debugging and ICE functions, which allow the proces-
sor and memory system to be interrogated via a chip-level
1149.1 interface. In between them is a debug protocol con-
verter. The converter takes the high-level commands issued by
ARMsd (such as set a breakpoint on address X) and generates
the low-level commands required to implement such a func-
tion by the target. The debugging extensions within
ARM7TDMI consist of two additional units over ARM7TDM, as
shown in Figure 8. These are the EmbeddedICE macrocell and
a 1149.1 compliant test access port (TAP) controller.

EmbeddedICE contains a collection of breakpoint regis-
ters. These compare the value on the address, data, and con-
trol outputs against values programmed into the registers.
EmbeddedICE is programmed through scan chain 2, via the
1149.1 interface. If a match occurs, EmbeddedICE generates
a breakpoint signal that passes to the processor. For example,
EmbeddedICE may be programmed to generate a breakpoint
when, say, an instruction is loaded from a particular address
or a particular data value is stored to a given location.

If the breakpoint occurs on an instruction fetch, and the
instruction reaches the execute stage of the pipeline (that is,
there is no preceding branch or exception), then instead of
executing the instruction the processor enters the debugging
state. If the breakpoint occurs on a data load or store, the
processor enters the debugging state at the end of the cur-
rent instruction. Once in this state, the processor state and
memory system may be examined.

The processor and memory are examined through the
1149.1 interface via the TAP controller. Once the processor
enters the debugging state, it stops fetching instructions from
the data bus and isolates itself from the memory clock. The
1149.1 state machine now determines the action of the
processor. The user may now scan instructions into the

28 IEEE Micro

termed a system speed instruction.

System speed instructions allow the user to interro-
gate memory from the debugging state. Typically, a
load multiple instruction would be scanned into the

" pipeline with the control bit high. As this executes at system

speed, data transfers from memory into the processor’s reg-
isters. This data can then be passed back to the debugger
via a debug-speed store multiple. . "

This operation may be repeated in reverse, also allowing
the user to download code from the debugger into memo-
ry. Here, a debug-speed load multiple fills the processor’s
registers. This is then copied into memory via a system-speed
store multiple. This feature is useful in the early stages of
system software development. The basic operating system
software may be downloaded, saving the inconvenience of
having to program EPROMs.

The debugging extensions offered by ARM7TDMI allow
system level debugging to be carried out in a system-inde-
pendent manner. This means that porting the debug system
is very easy since the only resource that is required on the
development system is a 1149.1 connector for the protocol
converter. No system memory is used, and no program ROM
is required, as typically found with debugging monitors. Also,
since the processor is accessed through the 1149.1 port, it is
impossible for the system to hang up such that the user can-
not determine the state of the processor.

Market impact

We expect to see applications in feature-hungry consumer
applications where products are at the ceiling of their cur-
rent 8-bit, CISC, embedded controller performance. Future
product generations will need more processing power and
a larger address space to accommodate new functionality,
but will not be able to afford the significant system cost
increase that would be associated with moving to a 32-bit
system. A good example of this kind of application is the
digital cellular telephone.

The next generation of phones
will bring features such as an
enhanced user interface and half-rate
GSM (Groupe Speciale Mobile digi-
tal cellular standard) coding for
improved speech quality. Ultimately,
a GSM phone might even be com-
bined with a personal digital assis-
tant, or PDA. This will not only drive
up the performance requirements for
the digital signal processor and
microprocessor, but will increase the
size of software required and hence
the amount of system memory.
Current bottom-of-the-range GSM
phones require 512 Kbytes of code.

Bytes

ARM7T
H8/500

CPU32

68000
i386
i960

SH7032
ARM7
H8/300H
MC68HC11
H8/300
Sparc
29000
RS6000
Alpha

280

This could well reach 2 to 4 Mbytes
in the near future.

Current 8-bit processors will fall
short on processing power, power
consumption (vitally important as it
governs battery life), and addressing space. The switch to
16- or 32-bit architectures is inevitable to support the cellu-
lar telephone roadmap.’

ARM7TDMI solves many of these problems since the
underlying 32-bit ARM7 processor provides the required per-
formance and address space. The 16-bit-wide Thumb instruc-
tion set enables the designer to use a 16-bit-wide bus without
losing performance. The traditional approach of using two
16-bit fetches for a 32-bit instruction falls over since perfor-
mance is drastically reduced. As has been demonstrated,
Thumb avoids the bus bottleneck by using 16-bit instruc-
tions that are decompressed to standard 32-bit ARM instruc-
tions in real time before being executed as usual on the full
32-bit ARM7 architecture.

Benchmarking tests using GSM code show that Thumb code
is up to 10 percent smaller than commonly used CISC cores.
Reducing code size enables either the elimination of 2 memo-
ry IC or the use of freed-up memory for new software features.
In addition, Thumb-aware cores offer more MIPS per MHz;
therefore a typical cellular phone using an 8-bit CISC clocked
at +10 MHz to deliver 1 MIPS can, by using an, ARM7TDMI,
clock the processor at less than 1 MHz for the same perfor-
mance. This reduction in clock speed brings a great saving in
power consumption and also allows the use of slower logic.

Code-size benchmarking

To ensure a fair comparison, we used code size that is
publicly available as Dhrystone 1.1 numbers in bytes for
competing solutions and added data for the ARM7TDMI
Thumb-aware core. However, this benchmark is not repre-
sentative of long programs since it is less than 4 Kbytes and
doés not contain long branches. As-code size is increased in

Figure 9. Normalized Dhrystone 1.1 code size for large memory model in bytes.
(Source: Microprocessor Forum, 1993, and vendor data.) *

complex applications such as PDAs, pagers, and cellular
phones, 8- and 16-bit controller code size increases rapidly
due to their lack of support for la{ge code. See Figure 9.

The density of native ARM code comes close to tradition-
al 16-bit CISC processors. This is due to novel features in the
ARM instruction set such as conditional execution for every
instruction and register write-back options.

With Thumb, designers who were previously considering
8- and 16-bit controllers to save system code memory can now
migrate to 32-bit ARM cores and reduce the size of their sys-
tem code. This will allow them either to eliminate a memory
IC or use the freed memory space for new software features.

Performance benchmarks

We generated data for the ARM7TDMI core using the
Thumb-aware ARMulator. This simulator provides a clock
cycle count from which Dhrystone 1.1 values are calculated.
Included is a cached version of the ARM7 processor for a fair
comparison on power consumption. In Table 2 (next page),
processors marked with an asterisk have an on-chip cache.

We also simulated performance and power consumption
numbers at 3V for both the ARM7DMI and the ARM7TDMI
running Dhrystones 1.1/2.1 at 20 MHz. See Tables 3 and 4.

The ARM7TDMI can execute both ARM and Thumb
instructions. Therefore, in a 32-bit-wide memory system, it
will deliver as many MIPS as the ARM7DMI if it runs in ARM
state 100 percent of the time. .

THE COST, PERFORMANCE, and power consumption of
the ARM7TDMI processor makes it an excellent choice for
portable applications. The ARM7TDMI has been licensed to

October 1995 29

Table 2. Dhrystone 1.1 MIPS and MIPS per watt at 5V,
20 MHz for processors in 16-bit systems. (Source:
Microprocessor Forum, 1993, and vendor data).

Power Dhrystone 1.1
Processor System (W) (MIPS) MIPS/W
ARM7TDMI 33 MHz, 5V 0.181 21.2 117
ARM7DMI 33 MHz, 5V 0.165 16.3 99
ARM710* 33 MHz, 5V 0.424 38.2 90
Z380 18 MHz 0.04 3.1 78
SH7032* 20 MHz, 5V 0.5 16.4 33
H8/500 10 MHz, 5V 0.1 1.0 10
486S5LC * 33 MHz 5V 2.25 18.0 8
H8/300H 16 MHz, 5V 0.25 19 8
386SLC 25MHz, 5V 2.5 8.0 3

*Includes an on-chip cache

Table 3. ARM cores at 3V, 20 MHz in a
16-bit-wide memory system.

Power Dhrystone
Processor Benchmark (W) (MIPS) MIPS/W
ARM7TDMI Dhrystone 1.1 0.026 12.8 492
ARM7TDMI Dhrystone 2.1 0.026 11.6 446
ARM7DMI Dhrystone 1.1 0.033 9.9 300
ARM7DMI Dhrystone 2.1 0.033 9.1 276

Table 4. ARM cores at 3V in a 32-bit-wide memory

system.
Power Dhrystone
Processor Benchmark (W) (MIPS) MIPS/W
ARM7TDMI Dhrystone 1.1 0.026 15.6 600
ARM7TDMI Dhrystone 2.1 0.026 14.0 538
ARM7DMI Dhrystone 1.1 0.033 19.1 579
ARM7DMI Dhrystone 2.1 0.033 180 . 545

several semiconductor manufacturers, and first silicon has been
produced. Several embedded ASIC products featuring the
ARM7TDMI will be released this year. We are now consider-
ing implementing Thumb in the other ARM processors. [B

References
1. T.E. 8ell, “Incredible Shrinking Computers, ” IEEE Spectrum, May
1991, pp. 37-41.

30 IEEE Micro

2. D.A. Patterson and J.L. Henessey, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, Calif., 1990;
ISBN 1-55860-188-0.

3. GH. Forman and). Zahorjan, “The Challenges of Mobile
Computing,” Computer, Apr. 1994, pp. 38-47.

4. S.B.Furber, VLSI RISC Architecture and Organization, Marcel Dekker,
New York, 1989; ISBN 0-8247-8151-1.

5. A. Van Someren, The ARM RISC Chip: A Programmer’s Guide,
Addison-Wesley, Reading, Mass., 1993; ISBN 0-201-62410-9.

6. IEEE Std 17149.1-1990, Test Access Port and Boundary-Scan
Architecture, (formerly the JTAG specification), IEEE, Piscataway, N.J.

7. S. Malhi and P. Chatterjee, "1V Micresystems-Scaling on Schedule
for Personal Communications, " IEEE Gircuits and Devices, Mar. 1994,

Simon Segars works in ARM’s Engineering Department as
both project manager and technical leader of the Thumb pro-
ject. He holds a BEng degree in electronic engineering from
the University of Sussex and is cutrently studying part time
for an MSc in low-power VLSI at the University of
Manchester. He is a member of the IEEE Computer Society.

Keith Clarke has been with the Engineering Department at
Advanced RISC Machines for two years, where he has held
responsibility for the Thumb instruction set decoder.
Clarke graduated from Southampton University, England,
with a BEng degree in electronic engineering. He is an asso-
ciate member of the Institution of Electrical Engineers.

Liam Goudge is a product manager for the ARM7 product line
and a segment manager for embedded control markets in
ARM's Marketing Group. Previously, he was a marketer with
Texas Instruments’ Mixed-Signal Group in France and England.

Goudge holds a BEng degree in electronics’ from
Nottingham University. He is a student member of the
Chartered Institute of Marketing.

Direct questions concerning this article to Liam Goudge,
Advanced RISC Machines, Fulbourn Road, Cambridge,
England; lgoudge@armitd.co.uk.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 156

Medium 157 High 158

