Data Structures and Algorithms II
Fall 2011
Programming Assignment #1
First, you are going to create a hash table class. Then you are going to write a program that uses your hash table class to read in a "dictionary" and spell check a "document". For the purposes of this assignment, a valid word is defined as any sequence of valid characters, and the valid characters are letters (capital and lowercase), digits (0 - 9), dashes ('-'), and apostrophes ('\'').

A dictionary is defined as a list of recognized words. The dictionary is guaranteed to contain exactly one word per line, with no leading or trailing spaces, followed by a single, Unix-style newline character ('\n'). Some of the words in the dictionary might not be valid (i.e., they may contain invalid characters). When loading the dictionary, invalid words, and also words that are too long (see below), can optionally be ignored. The dictionary does not specify the meanings of words; it just lists them.
The document to spell check may be any valid text file. Each line in the document will end with a single, Unix-style newline character. When spell checking the document, your program should indicate every unrecognized word, including the line number on which it occurs. Words should only be allowed to grow up to 20 characters. If a word in the document is too long, you should indicate the line number on which this occurs along with the first 20 characters of the word. The first line in the document is line 1. All words in the document that include digits (perhaps in addition to other characters) are technically valid but should not be spell checked (i.e., your program should ignore them). In the document, every character that is not a valid word character is a word separator; e.g., the string "abc@def" represents two valid words, "abc" and "def". Therefore, there cannot be invalid words in the document.

Your program should be case insensitive, and all capital letters in both the dictionary and the document should be converted to lowercase immediately upon seeing them.

Your program must be written in C++. In order to implement this task efficiently, you will use a hash table. You must create a hash table class in separate files, including a header file and an implementation file. Not every member function of the class will be necessary for this assignment, but you will reuse this class for your next two assignments. Since our textbook provides code for the separate chaining and quadratic probing collision resolution strategies, I am requiring that you use either linear probing or double hashing. (Linear probing is simpler to implement, and you will not receive any extra credit if you choose double hashing.) You are welcome to look at the book's code for the other two strategies, but keep in mind that the instructions that I will specify for your class make this different than the book's implementation in several ways. For example, the book uses templates for the hash table class, and you will not. Also, your hash table class will allow the programmer to associate additional data with each entry, while the book's implementation does not. More details about the requirements for your hash table class will be discussed later in this handout and in class.

To read the dictionary, simply insert every word in the dictionary into the hash table. To spell check the document, locate every valid word (keeping track of line numbers), and lookup (i.e., search for) each word in the hash table to see if it is recognized. You should assume that an average dictionary contains about 50,000 words, but that some might be as large as 600,000 words. A sample dictionary, a bit on the small side (approximately 25,000 words), can be found on magnum at "/usr/dict/words".
Your program should prompt the user for the name of the dictionary file, the name of the document file to be spell-checked, and the name of the file where output should be written. Your program should indicate how long, in seconds, it takes to read the dictionary and how long it takes to spell check the text file, measured in terms of CPU time. (These times should be displayed to standard output, not the output file.) Your program must compile and run correctly using the g++ compiler on either cygwin or Ubuntu.
Your hash table implementation must include a header file called hash.h and an implementation file called hash.cpp. The spell checking code, and the rest of the main program, should be included in a separate file. You should also create a Makefile that I can use to compile your program. I will provide a sample Makefile that I used for my version of the program (also shown on the final page of this handout). I will also give you my version of hash.h. You may reuse these two files directly if you wish. The files will be posted on the course website and discussed in class.

A sample run of the program and a sample output file appears on the next page. The document file used in that sample run will be available from the course website. Your output file should adhere exactly to the format shown, and all of the messages should be worded exactly the same way, with the same spacing. I will use "diff" to compare your output to mine, and you will lose points for any differences. (Of course, I will test your programs on multiple test cases involving different documents and dictionaries with various sizes.) Note that the output displayed to standard output does not have to match my formatting, as long as the content is the same.
The final two pages of this handout show my hash.h file. Your hash table class must implement the same public member functions as mine. Note that the "getPointer", "setPointer", and "remove" member functions will not be used for this assignment; however, they will be used for future assignments! The specifics of this header file, and also a Makefile, will be discussed in more detail in class. Both files will also be made available to you from the course website.
When your assignment is complete, e-mail me (CarlSable.Cooper@gmail.com) your program, including your source code files, your header file(s), and your Makefile. In addition to correctness, your grade might also depend on the efficiency and elegance of your code and adherence to proper C++ style. Your program is due before midnight on the night of Tuesday, September 27.

Below is a sample run using an identical dictionary to the one on magnum and a text file containing the lyrics to "Supercalifragilisticexpialidocious" from "Mary Poppins".
Enter name of dictionary: DICT/wordlist_small

Total time (in seconds) to load dictionary: 1.749

Enter name of input file: FILES/lyrics.txt

Enter name of output file: output1.txt

Total time (in seconds) to check document: 0.016

The output file should look exactly like this:

Long word at line 1, starts: um-deedledeedledeedl

Unknown word at line 1: um-deedleday

Long word at line 2, starts: um-deedledeedledeedl

Unknown word at line 2: um-deedleday

Long word at line 3, starts: um-deedledeedledeedl

Unknown word at line 3: um-deedledeedle

Long word at line 4, starts: um-deedledeedledeedl

Unknown word at line 4: um-um

Unknown word at line 4: um-um

Unknown word at line 4: um-um

Long word at line 8, starts: supercalifragilistic

Long word at line 11, starts: supercalifragilistic

Long word at line 13, starts: um-deedledeedledeedl

Unknown word at line 13: um-deedleday

Long word at line 14, starts: um-deedledeedledeedl

Unknown word at line 14: um-deedleday

Long word at line 15, starts: um-deedledeedledeedl

Unknown word at line 15: um-deedleday

Unknown word at line 17: super-super

Unknown word at line 18: supercali

Unknown word at line 19: supercalifragi

Unknown word at line 21: has

Unknown word at line 21: there's

Unknown word at line 21: dismay

Unknown word at line 23: better

Unknown word at line 23: carefully

Unknown word at line 27: yes

Unknown word at line 29: girl's

Long word at line 31, starts: supercalifragilistic

Long word at line 34, starts: supercalifragilistic

Long word at line 36, starts: supercalifragilistic

Long word at line 39, starts: supercalifragilistic

Long word at line 41, starts: supercalifragilistic

Unknown word at line 44: supercalifragilistic

Unknown word at line 45: supercalifragilistic

Long word at line 46, starts: supercalifragilistic
Below and on the next page, I am providing you with the header file for my hash table implementation. This will also be posted separately from the course home page.
#ifndef _HASH_H

#define _HASH_H

#include <vector>

#include <string>

class hashTable {

 public:

 // The constructor initializes the hash table.

 // Uses getPrime to choose a prime number at least as large as

 // the specified size for the initial size of the hash table.

 hashTable(int size = 0);

 // Insert the specified key into the hash table.

 // If an optional pointer is provided,

 // associate that pointer with the key.

 // Returns 0 on success,

 // 1 if key already exists in hash table,

 // 2 if rehash fails.

 int insert(const std::string &key, void *pv = NULL);

 // Check if the specified key is in the hash table.

 // If so, return true; otherwise, return false.

 bool contains(const std::string &key);

 // Get the pointer associated with the specified key.

 // If the key does not exist in the hash table, return NULL.

 // If an optional pointer to a bool is provided,

 // set the bool to true if the key is in the hash table,

 // and set the bool to false otherwise.

 void *getPointer(const std::string &key, bool *b = NULL);

 // Set the pointer associated with the specified key.

 // Returns 0 on success,

 // 1 if the key does not exist in the hash table.

 int setPointer(const std::string &key, void *pv);

 // Delete the item with the specified key.

 // Returns true on success,

 // false if the specified key is not in the hash table.

 bool remove(const std::string &key);

 private:

 // Each item in the hash table contains:

 // key - a string used as a key.

 // isOccupied - if false, this entry is empty,

 // and the other fields are meaningless.

 // isDeleted - if true, this item has been lazily deleted.

 // pv - a pointer related to the key;

 // NULL if no pointer was provided to insert.

 class hashItem {

 public:

 std::string key;

 bool isOccupied;

 bool isDeleted;

 void *pv;

 };

 int capacity; // The current capacity of the hash table.

 int filled; // Number of occupied items in the table.

 std::vector<hashItem> data; // The actual entries are here.

 // The hash function.

 int hash(const std::string &key);

 // Search for an item with the specified key.

 // Return the position if found, -1 otherwise.

 int findPos(const std::string &key);

 // The rehash function; makes the hash table bigger.

 // Returns true on success, false if memory allocation fails.

 bool rehash();

 // Return a prime number at least as large as size.

 // Uses a precomputed sequence of selected prime numbers.

 static unsigned int getPrime(int size);

};

#endif //_HASH_H
This page shows the Makefile that I used for my program. This will also be posted separately from the course home page.
spell.exe: spellcheck.o hash.o

g++ -o spell.exe spellcheck.o hash.o

spellcheck.o: spellcheck.cpp hash.h

g++ -c spellcheck.cpp

hash.o: hash.cpp hash.h

g++ -c hash.cpp

debug:

g++ -g -o spellDebug.exe spellcheck.cpp hash.cpp

clean:

rm *.exe *.o *.stackdump *~

backup:

test -d backups || mkdir backups

cp *.cpp backups

cp *.h backups
