Artificial Intelligence

Fall 2010
Project #1

It should come as no surprise that, for your first AI project, you will implement a game playing program that plays either Checkers (a.k.a. English Draughts) or Othello (a.k.a. Reversi) against the user. You may write the program using any programming language that you wish, as long as I can read, compile, and run your code. We will discuss the rules of these games in class, but it is your responsibility to make sure that you understand the rules of your selected game correctly. Google searches for "Othello rules" or "Checkers rules" will lead to pages that discuss the rules of these games.
You do not need to implement a graphical user interface; an ASCII interface is fine, as long as I do not need to strain my eyes to interpret the board. (Experiment to determine which characters are more easily distinguishable; most platforms also provide simple hacks for using color.) If you wish, you may implement a GUI, but you will not receive any extra credit for this. Your program must allow the user to select who moves first and there must be an option to have the computer play against itself. Furthermore, your program must allow the user to specify a starting position other than the typical starting position for the game; this will be discussed in class. At the end of a game, the program should announce the winner (or that the game is a draw); in Othello, the final score should also be displayed.
On each of the user's turn, the program should prompt the user for his or her move, giving the user an intuitive, simple way to specify the move. The program should check to ensure that the move is legal, and prompt the user again otherwise. The program must also provide the user an option to list all of the legal moves, or it can display a list of all the legal moves automatically. If legal moves are displayed automatically, one possibility is to number them and have the user select a number as his or her move. The program should not break if the user responds incorrectly.
At the start of the game, your program must also prompt the user for a time limit. This time limit, expressed as an integral number of seconds, determines how long the program has to make each of its moves. Your program must combine iterative deepening and an alpha-beta search (i.e., a minimax search with alpha-beta pruning), along with a heuristic function (a.k.a. an evaluation function) of your own construction, to search the game space and decide each of its moves. If multiple moves are tied for the best, the program should choose between them randomly. You may use other potential improvements as well if you wish (e.g., singular extensions or transposition tables), but this is not required and I do not expect you to do this. If you implement the search correctly, and you come up with a good heuristic, your program will play very well.
After every move by either the computer or the user, the program should display the updated board. After each of the computer's moves, the program should also output the amount of time spent searching for the current move and the maximum depth that has been searched. The time must be specified in terms of actual time (a.k.a. calendar time), not processor time (a.k.a. CPU time). You will lose points if any search takes longer than the specified time limit. In certain instances, the computer should not search for its entire time limit. If only one legal move is available, it should be taken immediately. Towards the end of the game, when the remainder of the game space can be searched in its entirety using less than the time limit, the computer should make its move after this has occurred. Optionally, you may decide that if more than half of the time limit is used up after a search to some specific depth, the program can use the result of the latest search and not bother starting the search to the next depth.
You will have one month to complete this project, and I will propose a time schedule to follow in class. Upon completion of the assignment, you will e-mail me all of your code, instructions on how to compile and run your programs, and a brief (approximately one page) write-up describing your program's implementation, features, and whatever else you would like me to know. I can not stress this enough: Get started early! And make frequent backups. This is a tough assignment. That being said: have fun with it!

