Artificial Intelligence

Fall 2009
Project #2
You are going to write two programs implementing the training and testing, respectively, of a neural network.  The training of the network should use back propagation and be based on the pseudo code from Figure 20.25 in the textbook.  I believe that there are several omissions in, and confusing aspects of, that pseudo code; I have added my own corrections and clarifications as discussed in class.  (I will post my corrections to that pseudo code on the class home page along with the assignment.)

I am instituting two simplifications to the pseudo code.  The first of these simplifications is that I am guaranteeing that all of the neural networks will contain exactly one hidden layer.  As discussed in class, a neural network with a single hidden layer can represent any continuous function, and using a single hidden layer is extremely common in practice.  The number of inputs in the network, the number of hidden nodes in the single hidden layer, and the number of output nodes will vary from network to network, as will the initial weights.  The expected outputs for training and testing examples will always be 1 or 0, respectively indicating inclusion or exclusion in some Boolean class.  (The second simplification to the pseudo code will be described later.)
The training and the testing programs that you create will rely on text files specifying neural networks.  Each such text file might represent a neural network that has already been trained based on specific data, or it might represent an untrained network with initial weights (that have been either manually set or randomly generated).  In either case, these text files will have the following format:

· The first line will contain three integers, separated by single spaces, representing the number of input nodes (Ni), the number of hidden nodes (Nh), and the number of output nodes (No).

· The next Nh lines specify the weights of edges pointing from input nodes to hidden nodes.  The first of these lines specifies the weights of edges entering the first hidden node; the second line specifies the weights of edges entering the second hidden node; etc.  Each of these Nh lines specifies Ni + 1 weights, which will be floating point numbers separated by single spaces.  These weights include the bias weight which is attached to a fixed input that always has its activation set to -1.  For each hidden node, the first weight represents the bias weight, and the next Ni weights represent the weights of edges from the input nodes to the hidden node.

· The next No lines specify the weights of edges pointing from hidden nodes to output nodes.  The first of these lines specifies the weights of edges entering the first output node; the second line specifies the weights of edges entering the second output node; etc.  Each of these No lines specifies Nh + 1 weights, which will be floating point numbers separated by single spaces.  These weights include the bias weight which is attached to a fixed input that always has its activation set to -1.  For each output node, the first weight represents the bias weight, and the next Nh weights represent the weights of edges from the hidden nodes to the output node.
When your neural network training program is executed, it should prompt the user for the names of three text files representing the initial neural network, a training set, and an output file; one positive integer representing the number of epochs; and one floating point value representing the learning rate.  The first text file should contain the representation of the neural network before training (i.e., it will specify the size of each layer and the initial weights of the network using the format that has previously been described).  The second text file specifies the training set for the neural network; i.e., this file contains training examples with which to train the network.  The first line of this file contains three integers separated by spaces: the number of training examples, Ni, and No (I guarantee that Ni and No will match the neural network being trained).  Every other line of the file specifies a single example, and contains Ni floating point inputs (the values of the example's attributes) followed by No Boolean outputs (each is 0 or 1).  The number of epochs specifies how many times the outer loop of the pseudo code (the repeat...until loop) should iterate.  This is the second simplification to the given pseudo code; instead of training until some stopping criterion is satisfied, training will proceed for a specified number of epochs.  (Remember that each epoch loops through the entire training set, updating the weights of the network for every training example.)  The learning rate is a floating point value that determines how fast weights are updated; values that are two big will cause weights to overshoot their appropriate values, and values that are too low will cause the learning to be inefficient, requiring too many epochs before reaching a near-optimal state.  The third text file, to be created by the training program, should have exactly the same format as the first text file, but the weights contained in this file should be the learned weights of the trained neural network.
When your neural network testing program is executed, it should prompt the user for the names of three text files.  The first text file contains the representation of a neural network (presumably one that has already been trained) using the previously described format.  The second text file specifies the test set for the neural network; i.e., this file contains testing examples with which to test the network.  The format of this file is the same as the format for the file that specifies a training set for a neural network (as has been described above).  The program should iterate through every test example, and for each, it should compute the outputs according to the specified neural network and compare them to the expected outputs.  When comparing actual outputs to expected outputs during testing, all actual outputs (i.e., activations of output nodes) that are ≥ 0.5 should be rounded up to 1, and all outputs that are < 0.5 should be rounded down to 0.  As testing proceeds, your program will need to keep track of various counts in order to compute several metrics that will soon be explained.  The third text file should store the results of these metrics with a format that will soon be specified.
When computing activations of all nodes in a neural network, both executables should use a sigmoid function (as opposed to a threshold function).  This means that your training executable will need to compute the derivative the sigmoid function with respect to the input for each node when it is updating weights.  Fortunately, this turns out to be very simple.  The equation for the sigmoid function is: sig(x) = 1 / (1 + e-x).  The equation for the derivative of the sigmoid function is: sig'(x) = sig(x) * (1 - sig(x)).
For each Boolean output class or category, you can imagine a contingency table indicating four counts:
	
	Expected = 1
	Expected = 0

	Predicted = 1
	A
	B

	Predicted = 0
	C
	D


Here, A is the number of test examples that are correctly placed in the class; B is the number of test examples that are predicted to be belong to the class even though they do not really belong to the class; C is the number of test examples that are not predicted to belong to the class even though they do belong to the class; and D is the number of test examples that are correctly predicted not to belong to the class.  Based on these counts, your program should compute the following metrics for each class or category:
(1) Overall accuracy = (A + D) / (A + B + C + D); this is the fraction of examples that are correctly predicted with respect to the current class.

(2) Precision = A / (A + B); of those examples which are predicted to belong to the current class, this is the fraction that actually belong to the class.

(3) Recall = A / (A + C); of those examples which actually belong to the current class, this is the fraction that are predicted to belong to the class.

(4) F1 = (2 * Precision * Recall) / (Precision + Recall); this is a way of combining precision and recall into a single metric, and it will always have a value in between the precision and the recall, closer to the lower of the two.

In addition to computing these metrics for every class, you can also compute each metric for the entire dataset.  There are two ways to do this; one is called micro-averaging, which weights every decision equally, and the other is called macro-averaging, which weights every class equally.  To compute the micro-averages for the first three metrics, you combine all of the contingency tables (for all classes) into one contingency table by adding all of the individual counts to obtain global counts for A, B, C, and D.  You then apply the formulas given above for overall accuracy, precision, and recall; the formula for F1 remains the same and is based on the new values of precision and recall.  To compute macro-averages for the first three metrics, you average together the values of overall accuracy, precision, or recall for the individual categories; the formula for F1 again remains the same and is based on the new values of precision and recall.
The output text file created by your testing program should contain No + 2 lines.  Each of the first No lines corresponds to a single category and should contain the eight values computed for A, B, C, D, and the metrics discussed above, separated by single spaces.  The remaining two lines should contain the four values computed for the micro-averaged metrics and the four values computed for the macro-averaged metrics, respectively.

I am going to provide you with a dataset to test your neural network; namely, the Wisconsin diagnosis breast cancer (WDBC) dataset, which I have found on-line.  Every example in the dataset represents a patient, and in the raw data file, each example includes 31 input attributes and one output.  The input attributes include a patient ID and 30 real-valued features that have been computed as follows:  (1) Ten real-valued features have been computed for each cell nucleus; namely, (a) radius (mean of distances from center to points on the perimeter), (b) texture (standard deviation of gray-scale values), (c) perimeter, (d) area, (e) smoothness (local variation in radius lengths), (f) compactness (perimeter^2 / area - 1.0), (g) concavity (severity of concave portions of the contour), (h) concave points (number of concave portions of the contour), (i) symmetry, and (j) fractal dimension ("coastline approximation" - 1).  (I do not understand some of these features, but for our purposes, it doesn't matter.)  (2) For each of these features, the mean, standard error, and worst values (actually, the mean of the three largest values) have been computed across all cells, thus leading to 30 real-valued features per patient.  The output is either M (for malignant) or B (for benign).  The raw data includes 569 examples; 357 are classified as benign, and 212 are classified as malignant.  The raw data is available in a file called wdbc.data, which I will make available to you, but you don't need to use it.  I will also provide a text file called wdbc.names, containing a description of the dataset by its creators.  Google searches related to the dataset reveal much additional information.
I have pre-processed the raw data to make our task simpler for us.  First, I have randomly divided the data into a training set with 300 examples (188 are classified as benign, 112 are classified as malignant) and a test set (that I am really using more like a tuning set) with 269 examples (169 are classified as benign, 100 are classified as malignant).  I have stripped the patient IDs, since they are not useful for learning.  I have moved the output to the end of each row, and have converted M to 0 and B to 1.  I have normalized every other column by dividing every value in the column by the maximum value in the column (I have found that the neural network training works better this way, given the initial weights that I have been using).  All in all, I have converted the files to formats that are appropriate for use with neural networks satisfying the specifications of this assignment.
For this dataset, I have found that a neural network consisting of a single hidden layer with 5 hidden nodes, a learning rate of 0.1, and 100 epochs of training lead to pretty good results.  I will provide you with my initial neural network file; the initial weights are randomly generated fractions between 0 and 1.  I will also provide you with my trained neural network file and my results file for the suggested combination of parameters.  This will allow you to test your training and testing programs against my data.  (If you use double precision floating point variables to represent all floating point values in your programs, and you format your output the same way that I have, I believe that your results should be identical to mine.  If you see any values that are significantly different than mine, this is an indication of a bug, even if your results are still good.)  You will note that the overall accuracy is over 96%, and the F1 metric is over 97%.  Since there is only one category being predicted, it turns out that the micro-averaged results and the macro-averaged results will exactly match the results for the single category; thus, the results look somewhat redundant for this dataset.
To allow you to test your programs on a dataset with multiple output categories, I have also created my own contrived dataset.  Each example represents a student, and includes five input attributes indicating scores on five assignments (each has been normalized to be a fraction between 0 and 1), and four output attributes representing categories of grades (D or better, C or better, B or better, and A, based on strict cutoffs of .60, .70, .80, and .90, respectively).  Of course, these output categories, which are determined by the average of the student's scores, are not independent of each other, but your neural network program won't know that!  It is conceivable, for example, that your trained network might predict that an example belongs to the B or better category, but not the C or better category, but I am not seeing anything like that happen after a reasonable number of training epochs with decently configured parameters.  I have created a randomly generated training set with 300 examples and a randomly generated test set with 100 examples (the distributions are not uniform).
For this dataset, I have found that a neural network consisting of a single hidden layer with 10 hidden nodes, a learning rate of 0.05, and 100 epochs of training lead to pretty good results; 9 failing students are predicted to be in the D or better category, and 3 students who should receive an A are not predicted to be in the A category, but everything else is correct.  The results are even better after 500 epochs of training; 3 failing students are predicted to be in the D or better category, but everything else is correct.  I am going to provide you with my initial neural network file (including randomly generated initial weights between 0 and 1), my trained neural network file after 100 epochs, and my results file based on this trained network.
The project is due before midnight on the night of Sunday, December 13.  After you have completed the assignment, e-mail your code along with simple instructions on how to compile and run your programs to CarlSable.Cooper@gmail.com.
