Data Structures and Algorithms II
Fall 2008
Programming Assignment #1
You are going to write a program that first reads in a "dictionary" and then uses the dictionary to spell check a "document".
For the purposes of this assignment, a valid word is defined as any sequence of valid characters, and the valid characters are letters (capital and lowercase), digits (0 - 9), dashes ('-'), and apostrophes ('\'').  A dictionary is defined as a list of recognized words, one per line (some might not be valid).  The dictionary is guaranteed to contain exactly one word per line, with no leading or trailing spaces, followed by a single, Unix-style newline character ('\n').  The dictionary does not specify the meanings of words; it just lists them.  The document to spell check may be any valid text file; each line in the document will end with a single, Unix-style newline character.

When spell checking the document, your program should indicate every unrecognized word, including the line number on which it is contained.  Words should only be allowed to grow up to 20 characters.  If a word in the document is too long, you should indicate the line number on which this occurs along with the first 20 characters of the word.  The first line in the document is line 1.  All words in the document that include digits (perhaps in addition to other characters) are valid but should not be spell checked (i.e., your program should ignore them).  In the document, every character that is not a valid word character is a word separator; e.g., the string "abc@def" represents two valid words, "abc" and "def".  Therefore, there can not be invalid words in the document.

It is not guaranteed that all words in the dictionary will be valid.  When reading the dictionary, invalid words, and also words that are too long, can be ignored (but this may not be necessary).

Your program should be case insensitive, and all capital letters in both the dictionary and the document should be converted to lowercase immediately upon seeing them.

To be efficient, you should use a hash table for this assignment.  Your assignment must be written in C++, and you should create a HashTable class of which the hash table should be a declared object.  Since our textbook provides code for the separate chaining and quadratic probing collision resolution strategies, I am requiring that you use either linear probing or double hashing.  (Linear probing is simpler to implement, and you will not receive any extra credit if you choose double hashing.)
You are welcome to look at the book's code for the other two strategies, but keep in mind that your class can and should be simpler than the book's classes.  For example, there is no need to use templates for this assignment, since the hash table can be implemented specifically for the specified task; i.e., you know it will only contain words, which should be stored as C++ strings.  Also, there is no need to implement deletion, since words are never removed from the dictionary.
To read the dictionary, simply insert every word in the dictionary into the hash table.  To spell check the document, locate every valid word (keeping track of line numbers), and lookup (i.e., search for) each word in the hash table to see if it is recognized.  You should assume that an average dictionary contains about 100,000 words, but that some might be as large as 1,000,000 words.  Make choices that make sense given these assumptions.  A sample dictionary, a bit on the small side (approximately 25,000 words), can be found on magnum at "/usr/dict/words".
Your program should indicate how long, in seconds, it takes to read the dictionary and how long it takes to spell check the text file, measured in terms of CPU time.  When grading, I will take into minor consideration the speed of the programs.  Your program must compile and run correctly using the g++ compiler on either cygwin or Ubuntu.
In addition to correctness and speed, you will also be graded on the elegance of your code and adherence to proper C++ style.  You should not be using older C constructs when newer C++ constructs are better or are more standard.

You may want to separate your hash table code from your spell checking code (using separate files) and provide a Makefile, but that is not required for this assignment (it will be for the next one).

A sample run of the program appears on the next page.  Your output should adhere to the exact format shown in the sample run, and all of the messages should be worded exactly the same way, with the same spacing.  I will use "diff" to compare your output to mine.  (Of course, I will test your programs on multiple test cases involving different documents and dictionaries with various sizes.)
When it is complete, e-mail me (CarlSable.Cooper@gmail.com) your completed program.   Your program is due before midnight on the night of Tuesday, September 16.

Below is a sample run using an identical dictionary to the one on magnum and a text file containing the lyrics to "Supercalifragilisticexpialidocious" from "Mary Poppins".  The text file will be available from the class website.
Enter name and path of dictionary file: wordlist_small

Total time (in seconds) to load dictionary: 0.1

Enter name of document to spell check: lyrics.txt

Long word at line 1, starts: um-deedledeedledeedl

Unknown word at line 1: um-deedleday

Long word at line 2, starts: um-deedledeedledeedl

Unknown word at line 2: um-deedleday

Long word at line 3, starts: um-deedledeedledeedl

Unknown word at line 3: um-deedledeedle

Long word at line 4, starts: um-deedledeedledeedl

Unknown word at line 4: um-um

Unknown word at line 4: um-um

Unknown word at line 4: um-um

Long word at line 8, starts: supercalifragilistic

Long word at line 11, starts: supercalifragilistic

Long word at line 13, starts: um-deedledeedledeedl

Unknown word at line 13: um-deedleday

Long word at line 14, starts: um-deedledeedledeedl

Unknown word at line 14: um-deedleday

Long word at line 15, starts: um-deedledeedledeedl

Unknown word at line 15: um-deedleday

Unknown word at line 17: super-super

Unknown word at line 18: supercali

Unknown word at line 19: supercalifragi

Unknown word at line 21: has

Unknown word at line 21: there's

Unknown word at line 21: dismay

Unknown word at line 23: better

Unknown word at line 23: carefully

Unknown word at line 27: yes

Unknown word at line 29: girl's

Long word at line 31, starts: supercalifragilistic

Long word at line 34, starts: supercalifragilistic

Long word at line 36, starts: supercalifragilistic

Long word at line 39, starts: supercalifragilistic

Long word at line 41, starts: supercalifragilistic

Unknown word at line 44: supercalifragilistic

Unknown word at line 45: supercalifragilistic

Long word at line 46, starts: supercalifragilistic

Total time (in seconds) to check document: 0.0
