
1

Advanced Computer
Architecture

Limits to ILP
Lecture 3

2

Factors limiting ILP
Rename registers

Reservation stations, reorder buffer,
rename file

Branch prediction
Jump prediction

Harder than branches
Memory aliasing
Window size
Issue width

3

ILP in a “perfect” processor

4

Window size limits
How far ahead can you look?
50 instruction window

2,450 register comparisons looking for
RAW, WAR, WAW
Assuming only register-register operations

2,000 instruction window
~4M comparisons

Commercial machines: window size up
to 128

5

Window size effects

Assuming all instructions take 1 cycle,

Assuming perfect branch prediction

6

Window size effects, limited issue

Limited to 64 issues per clock

(note: current limits closer to 6

7

Branch prediction effects

Assuming 2K instruction window

8

How much misprediction affects ILP?

Not much

9

Register limitations

Current processors near 256 – not much left!

10

Memory disambiguation
Memory aliasing

Like RAW, WAW, WAR, but for loads and
stores
Even compiler can’t always know

Indirection, base address changes, pointers

How to avoid?
Don’t: do everything in order
Speculate: fix up later
Value prediction

11

Alias analysis

Current compilers somewhere between
Inspection and Global/stack perfect

12

Instruction issue complexity
“Classic” RISC instructions

Only 32-bit instructions

Current RISC
Most have 16-bit as well as 32-bit forms

x86
1 to 17 bytes per instruction

13

Tradeoff
More instruction issue

More gates in decode – lower clock rate
More pipe stages in decode – more branch
penalty

More instruction execution
More register ports – lower clock rate
More comparisons – lower clock rate or
more pipe stages
Chip area grows faster than performance?

14

Help from the compiler
Standard FP loop:

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8

BNE R1,R2,Loop

1 cycle load stall
2 cycle execute stall

1 cycle branch stall

15

Same code, reordered

Loop: L.D F0,0(R1)

DADDUI R1,R1,#-8

ADD.D F4,F0,F2

BNE R1,R2,Loop

S.D F4,0(R1)

in load delay slot

in branch delay slot

1 cycle execute stall

Saves 3 cycles per loop

16

Loop Unrolling
In previous loop

3 instructions do “work”
2 instructions “overhead” (loop control)

Can we minimize overhead?
Do more “work” per loop
Repeat loop body multiple times for each
counter/branch operation

17

Unrolled Loop
Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D F4,0(R1)
L.D F0,-8(R1)
ADD.D F4,F0,F2
S.D F4,-8(R1)
L.D F0,-16(R1)
ADD.D F4,F0,F2
S.D F4,-16(R1)
L.D F0,-24(R1)
ADD.D F4,F0,F2
S.D F4,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

18

Tradeoffs
Fewer ADD/BR instructions

1/n for n unrolls

Code expansion
Nearly n times for n unrolls

Prologue
Most loops aren’t 0 mod n iterations
Need a loop start (or end) of single
iterations from 0 to n-1

19

Unrolled loop, dependencies minimized

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1)
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1)
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

This is what register renaming does in hardware

20

Unrolled loop, reordered

Loop: L.D F0,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,F0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
BNE R1,R2,Loop
S.D F16,8(R1)

This is what dynamic scheduling does in hardware

21

Limitations on software rescheduling

Register pressure
Run out of architectural registers
Why Itanium has 128 registers

Data path pressure
How many parallel loads?

Interaction with issue hardware
Can hardware see far enough ahead to notice?
One reason there are different compilers for each
processor implementation

Compiler sees dependencies
Hardware sees hazards

22

Superscalar Issue

Integer pipeline FP pipeline
Loop: L.D F0,0(R1)

L.D F6,-8(R1)
L.D F10,-16(R1) ADD.D F4,F0,F2
L.D F14,-24(R1) ADD.D F8,F6,F2
L.D F18,-32(R1) ADD.D F12,F10,F2
S.D F4,0(R1) ADD.D F16,F14,F2
S.D F8,-8(R1) ADD.D F20,F18,F2
S.D F12,-16(R1)
DADDUI R1,R1,# -40
S.D F16,16(R1)
BNE R1,R2,Loop
S.D F20,8(R1)

Can the compiler tell the hardware to issue in parallel?

23

Limit on loop unrolling
Keeping the pipeline filled

Each iteration is load-execute-store
Pipeline has to wait – at least at start of
loop

Load delays
Dependencies
Code explosion

Cache effects

24

Loop dependencies

for(i=0;i<1000;i++) {
A[i] = B[i];

}

for(i=0;i<1000;i++) {
A[i] = B[i] + x;
B[i+1] = A[i] + B[i];

}

Embarrassingly parallel

Iteration i depends on i-1

25

Software pipelining
Separate program loop from data loop

Each iteration has different phases of
execution
Each iteration of original loop occurs in 2
or more iterations of pipelined loop

Analogous to Tomasulo
Reservation stations hold different
iterations of loop

26

Software pipelining
Iteration

0
Iteration

1
Iteration

2
Iteration

3

Iteration -2

Iteration -1

Iteration 0

Iteration 1

Iteration 2

27

Compiling for Software Pipeline
for(i=0; i<1000; i++) {

x = load(a[i]);
y = calculate(x);
b[i] = y;

}

x = load(a[0]);
y = calculate(x);
x = load(a[0]);
for(i=1; i<1000; i++) {

b[i-1] = y;
y = calculate(x);
x = load(a[i+1]);

}

Original

Pipelined

28

Unrolling vs. Software pipelining

Loop unrolling minimizes branch overhead
Software pipelining minimizes dependencies

Especially useful for long latency loads/stores
No idle cycles within iterations

Can combine unrolling with software
pipelining
Both techniques are standard practice in high
performance compilers

29

Static Branch Prediction
Some of the benefits of dynamic
techniques
Delayed branch
Compiler guesses
for(i=0;i<10000;i++) is pretty easy

Compiler hints
Some instruction sets include hints
Especially useful for trace-based
optimization

30

More branch troubles
Even unrolled, loops still have some branches

Taken branches can break pipeline –
nonsequential fetch
Unpredicted branches can break pipeline

Especially annoying for short branches

a = f();
b = g();
if(a > 0)

x = a;
else

x = b;

31

Predication
Add a predicate to an instruction

Instruction only executes if predicate is true
Several approaches

flags, registers
On every instruction, or just a few (e.g., load predicated)

Used in several architectures
HP Precision, ARM, IA-64

LD R2,b[]
LD R1,a[]
ifGT MOV R4,R1
ifLE MOV R4,R2
…

32

Cost/Benefit of Predication
Enables longer basic blocks

Much easier for compilers to find parallelism
Can eliminate instructions

Branch folded into instruction
Instruction space pressure

How to indicate predication?
Register pressure

May need extra registers for predicates
Stalls can still occur

Still have to evaluate predicate and forward to
predicated instruction

