
1

Advanced Computer Architecture

Dynamic Instruction Level 
Parallelism
Lecture 2

2

Improving Performance
Three ways

Reduce clock cycle time
Technology, implementation

Reduce number of instructions
Improve instruction set
Improve compiler

Reduce Cycles/Instruction
Improve implementation

Can we do better than 1 
cycle/instruction?



3

Instruction Level Parallelism
Property of software

How many instructions are independent?
Very dependent on compiler

Many ways to find ILP
Dynamic scheduling
Superscalar
Speculation
Static methods (Chapter 4)

4

Multiple Issue
Issue more than 1 instruction per cycle
2 variants

Superscalar
Extract parallelism from single-issue instruction 
set
Run unmodified sequential programs

VLIW
Parallelism is explicit in instruction set
Chapter 4



5

Superscalar variants
Scheduling

Static
In order execution
Early superscalar processors, e.g., Sun 
UltraSparc II

Dynamic
Tomasulo’s algorithm – out of order execution, 
in order issue

Dynamic with speculation
Out of order execution, out of order issue
Most high-end CPU’s today

6

Issue constraints
Number of instructions to issue at once

Minimum 2, maximum 8

Number of execution units
Can be larger than number issued
Usually classes of E.U’s
Sometimes multiple instances per class

Dependencies
RAW still applies



7

Implementation Costs
Lookahead

Instruction window
IC alignment

Register pressure
2 extra read ports per function unit

Branch penalties
4 issue CPU, 25% of instructions are branches

Hazard detection
More?

8

Single Issue
Instruction
Memory

ALU

Data
Memory

Register
Array

PC

32 bits



9

Single Issue – separate float
Instruction
Memory

Int
ALU

Data
Memory

Int
Register

Array

PC

Float
Register

Array

Float
ALU

32 bits

10

Multiple Issue – separate float
Instruction
Memory

Int
ALU

Data
Memory

Int
Register

Array

PC

Float
Register

Array

Float
ALU

64 bits



11

Multiple Issue – replication
Instruction
Memory

Int
ALU

Data
Memory

Int
Register

Array

PC

Float
Register

Array

Float
ALU

64 bits

Int
ALU

Float
ALU

12

Superscalar Function Units
Can be same as issue width or wider 
than issue width
Varies by design

IBM RS/6000 (1st superscalar): 1 
ALU/Load, 1 FP
Pentium II: 1 ALU/FP, 1 ALU, 1 Load, 1 
Store, 1 Branch
Alpha 21264: 1 ALU/FP/Branch, 2 ALU, 1 
Load/Store



13

Forwarding – Standard Pipeline

Int
ALU

14

Forwarding – 2-way Superscalar

Int
ALU

Int
ALU



15

Forwarding – 4-way Superscalar

Int
ALU

Int
ALU

Int
ALU

Int
ALU

16

Clustering

Int
ALU

Int
ALU

Int
ALU

Int
ALU

Alpha 21264 an example



17

Forwarding costs
RAW detection

N2 growth in detection logic
Relatively localized

N2 growth in input muxes
Not so good
Wide buses (64-bit data)
Probably limits growth

18

Impact on Caches
Need to fetch n times as many bytes for 
n instructions issue

Branches a problem
Not-Taken can be issued, but must be checked

Data Cache pressure
More reads in parallel
More writes in parallel



19

Instruction Window
Must fetch enough memory from Icache
to issue all instructions

Wider fetch at same clock rate

Must be able to analyze all instructions 
in window at once

Looking for branches

20

Trace Caches
Combine instruction cache with Branch 
Target Buffer

Tag: PC plus directions of branches
Instruction fetches come from trace cache 
before IC

Still need regular IC for backup
Used in high end superscalar

Pentium 4 (actually micro-ops)



21

Trace Cache example

inst 4, inst 54

inst 2, inst 32

inst 0, inst 10

DataAddr

-

-

Yes

Taken?

inst 4, inst 54

inst 2, inst 32

inst 0, inst 40

DataAddr

WMXDFinst7

WMXDFinst6

WMXDFinst5

WMXDFinst4

WMXDFinst0

7654321icache

tcache

Assume inst0 is a branch to inst4

WMXDFinst7

WMXDFinst6

WMXDFinst5

WMXDFinst4

WMXDFinst0

7654321

22

Dynamic Scheduling
Apply Tomasulo to Superscalar
Reservation stations to each function unit

Difference: simultaneous assignments

Pipeline management more complex
Sometimes extend pipeline to calculate

May need even more function units
Out of order execution may result in resource 
conflicts
May need extra CDB (allows more than 1 
completion per cycle)



23

Speculation
Branches halt dynamic in-order issue

Speculate on result of branches and issue anyway
Fix up later if you guess wrong
Really need good branch prediction
Likewise, need dynamic scheduling

Used in all modern high-performance 
processors

Pentium III, Pentium 4, Pentium M
PowerPC 603/604/G3/G4/G5
MIPS R10000/R12000
AMD K5/K6/Athlon/Opteron

24

How?
Allow out-of-order issue
Allow out-of-order execution
Allow out-of-order writeback
Commit writes only when branches are 
resolved

Prevent speculative executions from changing 
state
Keep pending writes in a reorder buffer
Like adding even more registers than dynamic 
scheduling



25

Adding a reorder buffer

Store buffer
is gone

26

Stages of Speculative Execution
Issue

Issue if reservation and reorder buffer slot are 
free

Execute
When both operands are available, execute (check 
CDB)

Write Result
Write to reservation stations and reorder buffer

Commit
When instruction at head of buffer is ready, 
update registers/memory
If mispredicted branch, flush reorder buffer



27

Different implementations
Register Renaming (e.g., MIPS 10K)

Architectural registers replaced by larger physical 
register array

Registers dynamically mapped to correpsond to 
reservation stations, reorder buffer

Removes hazards
No name conflicts, since no reuse of names

Needs a free list!
Deallocating is complex

Do we still need a register after commit?

Permits a lot of parallelism

28

Advantages of Reorder Buffer
No more imprecise interrupts

Instructions complete out of order, but 
retire in order
Keeps dynamic schedule working through 
branches

Function as no-ops with respect to pipeline 
(unless mispredicted)

Extends register space
Even more instructions can be in flight



29

Disadvantages of speculation
Complexity

Handling variable length instructions
A lot of data copying internally
Even more load on CDB
Even larger instruction window

Looking past branches
Pressure on clock frequency

Sometimes simpler/faster beats complex/slower 
for performance
Simpler can be replicated more (see IBM’s Blue 
Gene)

30

How much further?
How far past a branch to speculate?
How many branches to speculate past?

Quadratic increase in complexity
Pressure on pipeline depth
No one does it very far


