Advanced Computer Architecture

Dynamic Instruction Level
Parallelism

Lecture 2

Improving Performance

= Three ways
= Reduce clock cycle time
»« Technology, implementation

= Reduce number of instructions
= Improve instruction set
= Improve compiler

= Reduce Cycles/Instruction
=« Improve implementation

= Can we do better than 1
cycle/instruction?

Instruction Level Parallelism

= Property of software
= How many instructions are independent?
= Very dependent on compiler

= Many ways to find ILP
= Dynamic scheduling
= Superscalar
= Speculation
= Static methods (Chapter 4)

Multiple Issue

= Issue more than 1 instruction per cycle

m 2 variants

= Superscalar

» Extract parallelism from single-issue instruction
set

»« Run unmodified sequential programs

= VLIW

= Parallelism is explicit in instruction set
= Chapter 4

Superscalar variants

= Scheduling

= Static
= In order execution
= Early superscalar processors, e.g., Sun
UltraSparc I
= Dynamic
=« Tomasulo’s algorithm — out of order execution,
In order issue
= Dynamic with speculation
= Out of order execution, out of order issue
= Most high-end CPU’s today

Issue constraints

= Number of instructions to issue at once
= Minimum 2, maximum 8
= Number of execution units
= Can be larger than number issued
= Usually classes of E.U’s
= Sometimes multiple instances per class
= Dependencies
= RAW still applies

Implementation Costs

= Lookahead
= Instruction window
= IC alignment

Register pressure

= 2 extra read ports per function unit

Branch penalties

= 4 issue CPU, 25% of instructions are branches
Hazard detection

More?

Single Issue

Register|
Array

Single Issue — separate float

Int Float
Register Register
Array Array

Multiple Issue — separate float

y
64

1%

Int Float
Register Register
Array Array

I

10

Multiple Issue — replication

Y
[64|bits |

S—— s—

Int Float

Register < Register
Array Array

11

Superscalar Function Units

= Can be same as issue width or wider
than issue width

= Varies by design

= IBM RS/6000 (15t superscalar): 1
ALU/Load, 1 FP

= Pentium Il: 1 ALU/FP, 1 ALU, 1 Load, 1
Store, 1 Branch

= Alpha 21264: 1 ALU/FP/Branch, 2 ALU, 1
Load/Store

12

Forwarding — Standard Pipeline

13

Forwarding — 2-way Superscalar

—ﬁ
‘" A 4 “V L' A 4 L

-

Forwarding — 4-way Superscalar

EEEE

15

Clustering

Alpha 21264 an example

16

Forwarding costs

= RAW detection

= N2 growth in detection logic
= Relatively localized
= N2 growth in input muxes
= Not so good
= Wide buses (64-bit data)
= Probably limits growth

17

Impact on Caches

= Need to fetch n7 times as many bytes for
1 instructions issue

= Branches a problem
= Not-Taken can be issued, but must be checked

= Data Cache pressure
= More reads in parallel
= More writes in parallel

18

Instruction Window

= Must fetch enough memory from Icache
to issue all instructions

= Wider fetch at same clock rate

= Must be able to analyze all instructions
In window at once

= Looking for branches

19

Trace Caches

= Combine instruction cache with Branch
Target Buffer

= Tag: PC plus directions of branches

= Instruction fetches come from trace cache
before IC

= Still need regular IC for backup

= Used in high end superscalar
= Pentium 4 (actually micro-ops)

20

Trace Cache example

Assume instO is a branch to inst4

icache
Addr Data
0 inst 0, inst 1
2 inst 2, inst 3
4 inst 4, inst 5
tcache
Addr | Taken? | Data
0 Yes inst 0, inst 4
2 inst 2, inst 3
4 inst 4, inst 5

2 3 4 5 6 7
inst0 D X M w
inst4 F D X M W
inst5 F D X M W
inst6 F D X M w
inst7 F D X M w
2 3 4 5 6 7
inst0 D X M w
inst4 D X M W
inst5 F D X M W
inst6 F D X M W
inst7 F D X M w

21

Dynamic Scheduling

Apply Tomasulo to Superscalar
Reservation stations to each function unit

= Difference: simultaneous assignments

Pipeline management more complex
= Sometimes extend pipeline to calculate

May need even more function units

= Out of order execution may result in resource

conflicts

= May need extra CDB (allows more than 1
completion per cycle)

22

Speculation

= Branches halt dynamic in-order issue
= Speculate on result of branches and issue anyway
= Fix up later if you guess wrong
= Really need good branch prediction
= Likewise, need dynamic scheduling

= Used in all modern high-performance
processors
= Pentium Ill, Pentium 4, Pentium M
= PowerPC 603/604/G3/G4/G5
= MIPS R10000/R12000
= AMD K5/K6/Athlon/Opteron

23

How?

Allow out-of-order issue

Allow out-of-order execution

Allow out-of-order writeback

Commit writes only when branches are

resolved

= Prevent speculative executions from changing
state

= Keep pending writes in a reorder buffer

= Like adding even more registers than dynamic
scheduling

24

Adding a reorder buffer

Reorder buffer
From instruction unit
) Reg # Data
Instruction
queue
FP registers
Load-store
operations
v i . Operand
Address unit Floating-point buses
operations
Load buffers
StOI'e buffer Operation bus
is gone
Store 3 i 2
address 2 Reservation — il 1
Store 1 stations
data Address -
Memory unit ' FP adders FP multipliers
Load
data Common data bus (CDB)
© 2003 Elsevier Science (USA). All rights reserved. 25

Stages of Speculative Execution

= Issue

= Issue if reservation and reorder buffer slot are
free

Execute

. Whe)n both operands are available, execute (check
CDB

Write Result
= Write to reservation stations and reorder buffer
Commit

= When instruction at head of buffer is ready,
update registers/memory

= If mispredicted branch, flush reorder buffer

26

Different implementations

= Register Renaming (e.g., MIPS 10K)
= Architectural registers replaced by larger physical
register array

« Registers dynamically mapped to correpsond to
reservation stations, reorder buffer

Removes hazards
= No name conflicts, since no reuse of names

Needs a free list!

Deallocating is complex
« Do we still need a register after commit?

Permits a lot of parallelism

27

Advantages of Reorder Buffer

= NO more imprecise interrupts

= Instructions complete out of order, but
retire in order

= Keeps dynamic schedule working through
branches

» Function as no-ops with respect to pipeline
(unless mispredicted)

= Extends register space
= Even more instructions can be in flight

28

Disadvantages of speculation

= Complexity

= Handling variable length instructions
A lot of data copying internally
Even more load on CDB

Even larger instruction window

= Looking past branches

Pressure on clock frequency

= Sometimes simpler/faster beats complex/slower
for performance

= Simpler can be replicated more (see IBM’s Blue
Gene)

29

How much further?

= How far past a branch to speculate?

= How many branches to speculate past?
= Quadratic increase in complexity
= Pressure on pipeline depth
= No one does it very far

30

