Data Structures and Algorithms II
Fall 2005
Programming Assignment #2
You are going to write a library that provides programmers with the functionality of a priority queue using a binary heap implementation. Your routines should not expect any particular type of data. Each inserted item into the binary heap will specify an integer id, an integer key, and any pointer. The id associated with every node must be a positive integer no greater then the capacity of the binary heap, which is specified by the programmer when the binary heap is created. The actual implementation of the library should use pointers to void in order to handle pointers to any type of data.
I have written a program that uses my own implementation of the library. I will provide you with that program, with the header file for the library, and with a makefile. You should not change any of these files! You should just fill in the missing heap.c file that makes everything else work. This means you must implement five functions: createHeap, insert, setKey, deleteMin, and delete. However, your heap.c file may (and should) include other functions that will be used by these functions but will not be seen by external programmers. For example, you should certainly have a function that implements the percolate up procedure and a function that implements the percolate down procedure, or otherwise you will need to repeat code.

In class, we will look at a sample run of the program and discuss the provided code. This program is passing string pointers to the "insert" routine of the heap library, but again, the library should accept any type of pointer. In the future, you will be using the library you write for this assignment in order to implement algorithms we learn about in class. If you need to change your code, meaning it was not general enough, you will lose points on future assignments. It is possible you may need to add routines for future assignments; but none of the routines you have already implemented should have to change.
All of the operations should be implemented with worst case logarithmic time algorithms. This means your internal implementation needs to be able to map an id to a node in constant time. Since id numbers are guaranteed to be in the range from 1 to the capacity of the heap, a hash table is not necessary. My binary heap structure contains four fields. Two are simple integers representing the size and capacity of the heap. The third is the actual heap, a dynamically allocated array of node structures, where each node contains an id, a key, and a pointer to void that can point to anything. The fourth is a map, a dynamically allocated array of integers that maps an id number (the index into this array) to a position in the heap. Both of the dynamic arrays have the same size; namely, the specified capacity of the binary heap (perhaps plus one, if you want to ignore the zero element). These dynamic arrays are allocated only once, when the heap is created.
E-mail me (sable2@cooper.edu) your heap.c file. You should not need to e-mail me anything else. I will be testing your code using cygwin.
