Programming Languages
Spring 2004

Final Exam Solutions
(50 points)

(1) You are going to write classes for a C++ program that keeps track of the inventory for a store that sells four types of items: books, DVDs, CDs, and snacks. Since all of these items share several things in common, there will be a common base class called Item. However, this should be an abstract class since you should not be able to declare a generic "item"; every item will be represented by an object of one of four derived types: Book, CD, DVD, or Snack. You can assume for this question that the appropriate header files have been included.

Once all of the appropriate classes are defined, declarations such as the following will be possible (the meaning of the arguments will be made clear shortly):

Snack s("Ice Cream", 2.00, 400);

DVD d("Raiders of the Lost Ark", 20.99, "Steven Spielberg");

Book b("The Emperor's New Mind", 15.50, "Roger Penrose");

CD c("Abbey Road", 10.99, "The Beatles");

(a) Write the class definition for the Item class.

Include the following member variables: a name of type "string" that represent the title of a book, DVD, or CD, or the kind of snack; a price of type "double" that represents the price of an item (e.g. 5.42 means five dollars and forty-two cents); and a count of type "int" which is the number of such items in stock.

Include a single constructor which takes, as parameters, a string representing the name of the object (title of a book, CD, or DVD, or the kind of a snack) and a double representing the price. Set the member variables of the object appropriately (initialize the count field to zero).
Include the following member functions: getName, getPrice, setPrice, getCount, setCount, isReturnable, and display. The first five should be self explanatory; they should get or set the appropriate field of an object. The "set" functions each need to accept a single parameter of the appropriate type. Note that there is no setName member function. The name defines the object, and will never change once an object is created. The isReturnable member function should be a function returning a boolean, and by default, it should return "true"; it may be overloaded by a derived class. These six member functions are simple enough that they should be inline functions; therefore, include the definitions of these functions within the class definition! The display member function, on the other hand, will be different for every type of item, so it should be a pure virtual function.

class Item {

 string name;

 double price;

 int count;

public:

 Item(string, double);

 string getName() {return name;}

 double getPrice() {return price;}

 void setPrice(int p) {price = p;}

 int getCount() {return count;}

 void setCount(int c) {count = c;}

 virtual bool isReturnable() {return true;}

 virtual void display() = 0;

};

(b) Write the constructor for the Item class.

Item::Item(string n, double p) {

 name = n;

 price = p;

 count = 0;

}

(c) Write the class definitions for the four derived classes: Book, CD, DVD, and Snack.
In addition to the base information, a Book object also has an author, a CD object also has an artist, a DVD object also has a director, and a snack object also has a count of calories; the first three of these member variables should be strings, the last should be an integer.

Every one of these classes has a constructor which takes the name and price of the object and also a string or integer representing the field specific to the type of object. (I am not asking you to write all of the constructors, only include what needs to be present in the class definition.)
Every one of these classes must define the display member function, or else they will be abstract classes. (You should not include the function definition in the class definition, just the function declaration. I am not asking you to write all of the display functions.)

The Snack class should overload the isReturnable function to return "false"; that can be done within the class definition since it is short enough to be an inline function.

class CD:public Item {

 string artist;

public:

 CD(string, double, string);

 void display();

};

class Book:public Item {

 string author;

public:

 Book(string, double, string);

 void display();

};

class DVD:public Item {

 string director;

public:

 DVD(string, double, string);

 void display();

};

class Snack:public Item {

 int calories;

public:

 Snack(string, double, int);

 void display();

 bool isReturnable() {return false;}

};
(d) Write the constructor for the Book class.

The constructor for the other three classes would look very similar!

Book::Book(string n, double p, string a) : Item(n, p) {

 author = a;

}

(e) Write any one of the four display member functions.

Make the function do something reasonable.

void CD::display() {

 cout << "Title: " << getName() << endl;

 cout << "Price: " << getPrice() << endl;

 cout << "Artist: " << artist << endl;

}
(f) Write a declaration for a vector of pointers to Item objects called inventory.

Briefly explain why the vector should store pointers to items instead of just items.

vector<Item *>inventory;

By storing pointers instead of just item objects, polymorphism will come into play when the items are manipulated using the pointers

(g) Overload the "<<" operator for the base Item class.
This part is a bit tricky. If you do this correctly, it can be a very simple function that takes advantage of polymorphism!
The answer I expected (and I did give full credit for this) was:

ostream& operator<<(ostream& o, Item& i) {

 i.display();

 return o;

}

However, I did realize later that there is a problem with this answer; this will always write the information for an item to "cout", instead of the stream specified by "o" if that stream is different. A true solution would be to provide overloaded definitions of "display" for each class that also accept an "ostream" as a parameter, and to call these versions instead of the one called above.

(25 points)

(2) Briefly answer the following short answer questions:
(a) Explain the concept of inheritance. What is it and why is it useful?

Inheritance refers to the property of a language such that subclasses (i.e. derived classes) automatically acquire the member variables and member function (i.e. methods) of their base classes. This allows a programmer to set up data and procedures that are common to related classes only once, and then to only specify the differences of each derived class.

(b) Explain the concept of polymorphism. What is it and why is it useful?

Polymorphism refers to the property of a language such that extra overhead is automatically added to objects which allows the compiler to place code into the executable such that a pointer to (or reference to) a base class knows if the object is really a member of a subclass. When a method is called at runtime, polymorphism automatically ensures that the method of the correct class is actually called.

(c) We have learned that Java has an Object class which every other class either directly or indirectly extends. Why is this useful?

For one, this allows certain methods to be inherited by all other classes. Perhaps even more importantly, this allows classes such as Java's stack or vector classes to be created that can accept any type of object (since all classes extend Object, directly or indirectly).

(d) In C++, how is a reference different from a pointer?

Syntactically, a reference is treated as a regular variable. Moreover, once a reference is initialized to refer to a certain memory location, future assignments will keep the reference referring to the same place, whereas a pointer can be made to point somewhere else. Although a reference is implemented as a pointer that is dereferences automatically, it might make more sense to think of it as a second name for some other variable.

(e) In Java, what memory is allocated when an object is declared? When is the memory allocated to store the object itself?

When an object is declared, the only allocated memory is enough memory to hold a memory address (i.e. a pointer). The memory to store the object itself is allocated when "new" is used.

(f) Name at least two ways in which Perl is significantly different from every other language we have covered.

Several possibilities: Perl is interpreted. Perl handles regular expressions. Variables do not need to be declared. Variables are global by default. No functions are required.

(15 points)

(3) What does the following C++ program output?

#include <iostream>

using namespace std;

void f1(int, int*, int&);

int f2(int, int*, int&);

int x = 0;

int main() {

 int y = 5;

 int z = 10;

 f1(x, &y, z);

 cout << x << ", " << y << ", " << z << endl;

 x = 30;

 y = 35;

 z = 40;

 x = f2(x, &y, z);

 cout << x << ", " << y << ", " << z << endl;

}

void f1(int a, int *b, int &c) {

 a = 15;

 b = &a;

 *b = 20;

 c = 25;

}

int f2(int a, int *b, int &c) {

 a = 50;

 *b = 55;

 c = a;

 return a;

}
0, 5, 25

50, 55, 50

(10 points)

(4) Write a program in Java consisting of a single class that can be run as a standalone application. The name of the class should be SimpleSum, and the program should read two integers from the user and output their sum. Here is a sample run of the program
Enter first integer: 15

Enter second integer: 25

15 + 25 = 40

The program should catch exceptions of the appropriate type or types and do something reasonable in response.

import java.io.*;

public class SimpleSum {

 public static void main(String [] args) {

 BufferedReader input = new BufferedReader

 (new InputStreamReader(System.in));

 try {

 System.out.print("Enter first integer: ");

 String iString = input.readLine();

 int i1 = Integer.parseInt(iString);

 System.out.print("Enter second integer: ");

 iString = input.readLine();

 int i2 = Integer.parseInt(iString);

 System.out.println(i1+ " + " +i2+ " = " +(i1 + i2));

 }

 catch (IOException e) {

 System.out.println("IOException caught!");

 System.exit(1);

 }

 catch (NumberFormatException e) {

 System.out.println("NumberFormatException caught!");

 System.exit(1);

 }

 }

}

