CS102: Topic #18 - Binary Trees

The next topic is somewhat related to linked lists; the topic is trees.  Like linked lists, this topic involves a combination of structures, pointers, and dynamic memory allocation.  However, where as linked lists are comprised of a linear sequence of nodes, every tree has a single root node, and each node can have zero, one, or multiple children.  If we are looking at two nodes "x" and "y" in a tree, and "y" is a child of "x", then "x" is said to be the parent of "y".  Furthermore, if "y" is below "x", and there is a path in the tree from "x" to "y", then "y" is said to be a descendant of "x", and "x" is said to be an ancestor of "y".  A node with no children is said to be a leaf of the tree, and all other nodes are call internal nodes.  The root of a tree is said to be at depth 0, and every other node is said to have a depth, which is the number of links from the root to the node.  The depth of the tree as a whole is the maximum depth of all nodes within the tree.

We are going to restrict our attention to binary trees, in which each node can have at most two children.  It is common to refer to the two children of a node as the left child and the right child.  Most binary trees are ordered in some way.  For example, if the data stored in each node is a single integer value, a likely rule will be that all descendants of a node "x" whose data has a value less than the value of the data in "x" should be stored in the left subtree of "x", and all descendants whose data has a value greater than or equal to the value of the data in "x" should be stored in the right subtree of "x".

The structure of a node for a binary tree whose data is a single integer variable might be defined as follows:

typedef struct node

{


int x;


struct node *left;


struct node *right;

} NODE;

typedef NODE *PNODE;

Here is a routine to create a node of this type to store a given integer:

/* Creates a node for given data and return pointer to it. */

PNODE create_node(int x)

{


PNODE pTemp;

pTemp = (PNODE) malloc (sizeof(NODE));

if (pTemp == NULL)

{



printf("Out of memory, could not store number!\n");

}

else

{



pTemp->x = x;


pTemp->left = NULL;


pTemp->right = NULL;

}


return pTemp;

}

If you compare this to the "create_node" routine for creating nodes to be placed in a linked list, you will find that it is almost identical, except that there are now two links that must be set to NULL.

When inserting nodes into a binary tree using the ordering rule discussed above, all new nodes are inserted as leafs in the tree.  To determine the location to insert a new node, you start searching the tree at the root.  If the data in the new node is greater than or equal to the data in the current node, you step to the right child of the current node and continue the search.  If the data in the new node is less than the data in the current node, you step to the left child of the current node and continue the search.

Here is a routine that will insert a node into a binary tree and return a pointer to the new tree, assuming the ordering rule discussed above:

/* Inserts node pNew into pRoot. */

PNODE insert_node(PNODE pRoot, PNODE pNew)

{


PNODE pParent, pCur;


/* If this is the first element, it becomes the root of the tree. */


if (pRoot == NULL)



return pNew;


/* Find position of new element, start searching at root of tree. */


pParent = NULL;


pCur = pRoot;


do


{



if (pNew->x < pCur->x)



{




/* New node belongs in left subtree. */




pParent = pCur;




pCur = pCur->left;



}



else



{




/* New node belongs in right subtree. */




pParent = pCur;




pCur = pCur->right;



}


} while (pCur != NULL);


/* Insert new node as appropriate leaf. */


if (pNew->x < pParent->x)



pParent->left = pNew;


else



pParent->right = pNew;


return pRoot;

}

This routine inserts a node into a tree starting at "pRoot".  If the root is NULL, then the new node becomes the root of a new tree.  Otherwise, we search left and right, following the rule that determines ordering, until we reach a NULL pointer.  At that point, we insert the new node as a leaf where the NULL pointer was.

Once a tree like that has set up, a simple procedure can be followed to print out all numbers in sorted order.  We know that given any node, all nodes in the left subtree must have values less than the value of the current node, and all nodes in the right subtree must have values greater than or equal to the value of the current node.  Therefore, as long as we make sure to print out the values of all nodes in the left subtree before the value of the current node and the value of the current node before the values of all nodes in the right subtree, and this is true for all nodes, we will be printing out the values in sorted order.  A traversal of the tree which prints out values in this order (left child, current node, right child) recursively is called an inorder traversal of the tree.  Here is the routine:

/* Display all nodes in tree using an inorder traversal. */

void inorder_traversal(PNODE pCur)

{


if (pCur == NULL)



return;


inorder_traversal(pCur->left);


printf("%d\n", pCur->x);


inorder_traversal(pCur->right);


return;

}

Of course, if the binary tree was set up in an arbitrary manner, without the ordering rule discussed above being followed, an inorder traversal of the tree will not print the values in sorted order!

Finally, here is a function "main" which assumes the existence of the above structure and routines and uses a binary tree to allow the user to type in integers until they signal EOF and then displays the numbers in sorted order:

int main(void)

{


int x;


PNODE pNode, pRoot = NULL;


printf("Enter numbers one at a time, Ctrl-D to stop.\n");


while(scanf("%d", &x) != EOF)


{



pNode = create_node(x);



if (pNode != NULL)




pRoot = insert_node(pRoot, pNode);


}


inorder_traversal(pRoot);


return 0;

}
If numbers happen to be entered in sorted order already, the tree will just grow to the right every time, and after "n" integers are entered, the tree will have depth "n-1".  If the numbers happen to be entered in reverse sorted order, the tree will just grow to the left every time.  As it turns out, however, if integers are entered in a basically random order, the average node will wind up being at a depth of approximately "log n", and if all possible orders of input are equally likely, the expected run time of a sort using the above method is O(n log n), which is as good as merge sort!  In the worst case (for instance, when the numbers are already sorted), this run time of this sorting method is O(n^2).  It also turns out there are complex variations of binary trees which allow you to ensure efficient sorting even in the worst case.

Of course, as with linked lists, we could rewrite the program such that each node also contains a "count" field, and if the same integer is entered more than once, then for all times other than the first, no new node is created and instead the node for the integer has its count increased.  We won't actually examine that code.

Although it may seem more efficient to always use the method with counts, instead of duplicating nodes with the same data, remember that sometimes nodes will be sorted based on one field, but may contain other data that is not identical between nodes with identical keys.  For example, let's say we were sorting nodes representing phone book entries based on last names.  Two nodes may share the same last name, but different first names and phone numbers.  Or, maybe you will even have two entries for the same person with two different phone numbers.  If the sort routine is only looking at the fields upon which the sorting is based, it can not simply increase the count of a node that has an identical field to a new entry, and must create a new node to store the new entry.

Deleting a node from a binary tree is more complex, especially when the node has both children.  The basic technique is to replace the deleted node with one of its subtrees and then to insert the other subtree into the first.  We won't go over this in detail.

