CS102: Topic #16 - Structures

A structure is a defined data type that allows a programmer to store different pieces of information, possibly of different types, in a single variable.  For example, let's say you want to write a program that allows a user to enter data points on a Cartesian plane.  Each point will have an x coordinate and a y coordinate.  It would be annoying to store all the x coordinates and y coordinates in separate variables.  We want to define a data type used for storing points such that each single variable will store both the x coordinate and the y coordinate of a point.  You can set up such a data type using structures as follows:

struct point

{


int x;


int y;

};

This defines a new data type called "point".  New variables can be declared with this type.  Let's say you want to declare two variables, "point1" and "point2", of type "point".  You would use:

struct point point1;

struct point point2;

or, you could declare both variables with a single declaration as follows:

struct point point1, point2;

The individual elements of a structure are often referred to as fields or members of the structure.  You access a specific field of a structure variable by specifying the name of the variable followed by a period (known as the member operator) followed by the name of the field.  For example, the following are all valid statements if "point1" and "point2" are structure variables of type "point", and "point" is a structure as defined above:

point1.x = 5;

point1.x = point2.y * 7;

printf("The coordinates of point1 are (%d, %d).\n", point1.x, point1.y);

scanf("%d", &point2.y);

If the definition of a structure type is defined at the top of a function, it is local to the function, and only that function can declare structure variables of that type.  If the structure type is defined outside all functions at the top of your program, it is a global type, and all functions can use structure variables of that type.

One concept that is often used in conjunction with structures is the concept of type definitions.  Using a type definition really means that you are taking an existing type and giving it a second name.  The existing type can be either a standard type that C provides (e.g. int, float, or char) or a type that you have already defined (e.g. a structure).  It has become standard practice to name all type definitions using all capital letters, but this is not required.  For instance, let's say you don't like the abbreviation "int" for integer, and would prefer to use "INTEGER".  You can create the following type definition using the typedef construct:

typedef int INTEGER;

Now, in your program, you can declare integers as follows:

INTEGER x, y, z;

This is equivalent to:

int x, y, z;

It is more common to use type definitions when defining structures because it avoids the need of repeating the "struct" keyword for every variable declaration.  For instance, after defining the "point" structure as above, you can create a type definition for type "POINT" as follows:

typedef struct point POINT;

Then you can declare "point1" and "point2" as follows:

POINT point1, point2;

The type FILE is actually a type-defined structure containing information about a particular file.  It is defined in "stdio.h".

It is also possible to combine the definition of a struct with the typedef that gives it a name.  For instance:

typedef struct point

{


int x;


int y;

} POINT;

When you do this, if you know that all variables will be declared using the type definition, you may actually leave out the first structure name.  For instance, it is valid to say:

typedef struct

{


int x;


int y;

} POINT;

It is possible to assign the value of one struct variable to another structure variable of the same type.  For example, let's say that "point1" and "point2" are both structures of type "point", "point1" has already had its fields filled in, and you want to assign the value of "point1" to "point2".  It is valid to say:

point2 = point1;

This is the same as assigning the values of each individual field of "point1" to the fields of "point2".  If you do this with structures contain arrays, each element of each array is copied (it is technically a byte by byte copy taking place), but if you do this with structures containing pointers, only the pointers are copied (i.e. the original and the copy point to the same memory).

It is also possible for one field of a struct to be another struct.  For example, let's say you have already defined the "point" struct as above (without using "typedef"), and now want to define a structure to contain the top left and bottom right points of a rectangle.  You could do this as follows:

struct rectangle

{


struct point top_left;


struct point bottom_right;

};

You could then declare "rectangle" variables as follows:

struct rectangle rectangle1, rectangle2;

Assuming "point1" and "point2" have still been declared as above, some valid statements would now be;

rectangle1.top_left.x = point1.x;

point2.y = rectangle2.bottom_right.y;

rectangle1.top_left = point1;

You can initialize the fields of a structure variable one at a time after the variable has been declared, or you can initialize all the fields at once when you declare the structure variable.  Similar to when you initialize an array variable with its declaration, you specify the values of all the fields, in order, within curly braces.  Nested structures must have nested sets of curly braces.  For instances, the following are valid declarations with initializations assuming the structures defined above:

struct point point1 = {2, 5};

struct rectangle rectangle1 = {{2, 5}, {7, 1}};

If one of the fields happens to be a string, you can indicate its initial value by specifying the string in quotes.

It is also possible to use arrays within structures, or to have arrays of structures.  Rather than give individual examples of this, we are going to look at entire small application.  This defines a structure called "student".  Associated with each student is an e-mail address, scores on three homework assignments, a score on a test, and a final weighted average.  This application will read student information from a user, compute the final average for each student, and output the information in sorted order based on e-mail names.

/*

 * This program allows the user to enter an e-mail address,

 * three homework scores, and one test score for all students.

 * It computes the average score for each student, sorts the

 * students based on e-mail names, and displays final averages.

 */

#include <stdio.h>

#define NUM_STUDENTS 10

#define NUM_HW 3

struct student

{


char email[50];


/* e-mail address */


int homeworks[NUM_HW];
/* scores on homeworks */


int test;



/* score on test */


float final;



/* final average */

};

typedef struct student STUDENT;

void input_students(STUDENT [], int);

void compute_averages(STUDENT [], int);

void sort_students(STUDENT [], int);

void swap_students(STUDENT *, STUDENT *);

void display_students(STUDENT [], int);

int main(void)

{


STUDENT arrStudents[NUM_STUDENTS];


input_students(arrStudents, NUM_STUDENTS);


compute_averages(arrStudents, NUM_STUDENTS);


sort_students(arrStudents, NUM_STUDENTS);


display_students(arrStudents, NUM_STUDENTS);


return 0;

}

/* Allow user to enter e-mail address and scores for each student. */

void input_students(STUDENT arrStud[], int numStudents)

{


int x, y;


/* Input information about students */


for (x = 0; x < numStudents; x++)


{



printf("Enter e-mail address of student #%d: ", x+1);



scanf("%s", arrStud[x].email);



for (y = 0; y < NUM_HW; y++)



{




printf("Enter score on homework #%d: ", y+1);




scanf("%d", &arrStud[x].homeworks[y]);



}



printf("Enter score on test: ");



scanf("%d", &arrStud[x].test);


}


return;

}

/*

 * Computes final average for each student.

 * Assumes homework is worth 60% and test is worth 40%.

 */

void compute_averages(STUDENT arrStud[], int numStudents)

{


int x, y;


int h_tot;


for (x = 0; x < numStudents; x++)


{



h_tot = 0;



for (y = 0; y < NUM_HW; y++)




h_tot = h_tot + arrStud[x].homeworks[y];



arrStud[x].final = (0.6 * h_tot / NUM_HW + 0.4 * arrStud[x].test);


}


return;

}

/* Use selection sort to sort students according to e-mail names. */

void sort_students(STUDENT arrStud[], int numStudents)

{


int index1, index2, indexS;


for (index1 = 0; index1 < numStudents - 1; index1++)


{



indexS = index1;



for (index2 = index1 + 1; index2 < numStudents; index2++)




if (strcmp(arrStud[indexS].email, arrStud[index2].email) > 0)





indexS = index2;



if (indexS != index1)




swap_students(&arrStud[index1], &arrStud[indexS]);


}


return;

}

/* Exchanges the values of two students. */

void swap_students(STUDENT *pstud1, STUDENT *pstud2)

{


STUDENT tmp;


tmp = *pstud1;


*pstud1 = *pstud2;


*pstud2 = tmp;


return;

}

/* Displays e-mail and final average of each student. */

void display_students(STUDENT arrStud[], int numStudents)

{


int x;


for (x = 0; x < numStudents; x++)


{



printf("Student #%d:\n", x+1);



printf("\tEmail: %s\n", arrStud[x].email);



printf("\tFinal Average: %.1f\n", arrStud[x].final);


}


return;

}

The definition of the "student" structure contains four fields.  One is an array of characters, or a string, representing a student's e-mail address.  (We are assuming that the user will not type an e-mail address over 49 characters, leaving at least one slot for a null character.)  Another field is an array of integers storing the scores of the student on three homework assignments.  The third field stores the score of the student on a test.  The final field is not entered by the user but computed by the program; it represents the student's final average for the course.

The "typedef" line defines "STUDENT" to be the same type as "struct student".

In "main", we define "arrStudents" to be an array of 10 "STUDENT" structures.  Each slot in this array represents one student.  We loop from 0 through 9 (the indices of "arrStudents") and ask the user to input the information for each student.  Note that the "scanf" to read the e-mail name does not use a '&' since it is passing a string (an array of characters used as a pointer constant), but the other two "scanf" statements do use '&' since each being used to read the value of an integer.  The precedence of '&', although high, is less than the precedence of '[]' or '.' so in each case, the expressions to the right of the '&' sign in this program is evaluated first, and then the address of the integer to be filled is passed to "scanf".

Our "main" calls four separate routines to read input from the user, compute averages for students, sort the student records (structures) according to e-mail names, and display information for the students.

The routine "input_students" gets passed an array of "STUDENT" structures and the number of slots in the array.  It loops through the array allowing the user to enter information with which to fill most slots of each structure.

The routine "compute_averages" loops through the "STUDENT" records, and for each "STUDENT" structure, it computes the student's final average based on his other scores and fills in the final field of the structure.

The routine "sort_students" uses selection sort to sort the student records by e-mail name.  It is very similar to the selection sort used to sort an array of integers.  Instead of comparing numerical values, we use "strcmp" to compare two strings (the two e-mail addresses being compared).  In the past, we have only used strcmp to check if two strings were equal; here, we use it to see if one is greater than the other.  If and only if the two strings are equal, we've already seen that "strcmp" returns 0.  If the first string is less than the second (according to the ANSI character set, which matches alphabetically if all strings are of the same case), "strcmp" returns some negative number.  If the first string is greater than the second, "strcmp" returns some positive number.

The "swap_students" routine that "sort_students" relies on is very similar to the routine from last time to swap two integers.  By passing pointers to the two "STUDENT" records, we can permanently change their values.

Finally, "display_students" loops through the "STUDENT" records (already sorted) and prints the e-mail address and final average for each student.

Although we have used pointers to structures in this program (in "swap_students"), we did not access any specific fields of the structures that the pointers pointed to.  We only manipulated the structures as a whole.  Let's say that "pStud" is a pointer to a variable of type "STUDENT" as defined in the above program.  One way to access its fields is by first using the indirection operator to get to the structure itself, than accessing its fields in a typical fashion.  For instance, the following are valid statements:

(*pStud).homeworks[1] = 87;

scanf("%s", (*pStud).email);

Note the parentheses around the instances of "*pStud".  These parentheses are necessary because the precedence of '.' is higher than the precedence of '*'.  We must do the indirection of the pointer first to get to the structure, and then access the structure's field.

To avoid the confusion and sloppiness of this type of code, another operator, known as the selection operator, exists to be used along with pointers to structures.  The selection operator dereferences a pointer to a structure and accesses a specified field of the structure.  The selection operator has the same precedence as the member operator.  To use the selection operator, you first specify the name of the pointer, then a '-' followed by a '>' followed by the name of the field.  So the selection operator is specified as "->" which looks sort of like a right arrow.  For example, the two lines above could be rewritten as the equivalent:

pStud->homeworks[1] = 87;

scanf("%s", pStud->email);

This notation is much more common than the first notation.  It will be used quite frequently for our next topic, linked lists.

Let's say you wanted to add a function to the above program that could be used to swap two students' test scores.  (Such a contrived function would probably not be useful, but it will be shown to demonstrate the use of the selection operator.)  Such a function could be written as follows:

void swap_tests(STUDENT *pStud1, STUDENT *pStud2)

{


int temp;


temp = pStud1->test;


pStud1->test = pStud2->test;


pStud2->test = temp;


return;

}

Note that you could not do the equivalent of this function by just passing "STUDENT" structures instead of pointers to them.  When you pass a structure to a function, like when you pass integers, characters and floats, a copy of the variable (the entire structure) is made, and the parameter in the function is local to that function.  Changing the value of the parameter doesn't change the value of the variable whose value was passed.

Without structures, each piece of information about any object or entity would need to be stored in a separate variable.  Apart from the extra bookkeeping that this would entail just to keep track of them all, certain procedures, such as the sort in the above program, would become quite annoying.  For example, if each field for all students were kept in a separate array, and we wanted to sort all student information according to e-mail addresses, the sort would have to be based on the e-mail array, but slots of all the other arrays would need to be swapped also so information on individual students remains coordinated.  It would be very easy to make errors that lead to information about different students appearing to correspond to just one student.

