CS102: Topic #19 - Miscellaneous
Subtopic 1: command-line arguments

Every program has exactly one function named "main", and up until now, every function "main" that we've seen takes no parameters.  That is not necessarily the case; it is possible to write a program such that the user can specify command-line arguments; that is, he or she can pass arguments to the program when running it.  For example, consider the compilers that you run so often, "gcc" and "cc".  They take, as parameters, the name of the program to compile, and optionally several other parameters, like "-o" followed by an executable name.  Also consider text editors, like "pico"; If called without a parameter, they run starting with an empty file, but if called with a parameter specifying the name of a text file, they open that text file.

When you write your "main" function, it can either take no parameters (in which case "void" is used inside parenthesis, as we have seen so many times), or it can take two parameters.  The first such parameter must be an integer, and the second must be an array of pointers to characters (i.e. an array of strings).  Typically, the parameters are called "argc" and "argv", although you are allowed to name them anything you like.  The value of the first parameter is the number of string parameters passed to the function.  The first such string parameter ("argv[0]") is automatically the name of the program, and that is optionally followed by additional parameters ("argv[1]" through "argv[argc-1]") that the user may have specified.

Let's say we want to write our own version of "grep", a program that searches for all lines in a file that contain a given string.  We will call the source file "mygrep.c", and we will call the executable "mygrep".  The program can be written as follows:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{


FILE *fpInput;


char line[100];


if (argc != 3)


{



printf("Usage: %s <string> <filename>\n", argv[0]);



return 0;


}


if ((fpInput = fopen(argv[2], "r")) == NULL)


{



printf("Could not open file \"%s\".\n", argv[2]);



return 0;


}


while (fgets(line, 100, fpInput) != NULL)


{



if (strstr(line, argv[1]) != NULL)




printf("%s", line);


}


return;

}

In this program, we have introduced a new function in the "string.h" library.  The function "strstr" takes two strings and searches for the second within the first.  If found, it returns a pointer to the first instance of the second string within the first; otherwise, it returns NULL.

Let's say we compile "mygrep.c" (the program above) and name the executable "mygrep".  If we try to run "mygrep" without specifying exactly two optional parameters (i.e. we specify less than two or more than two), we will see the following message displayed to standard output:

Usage: mygrep <string> <filename>

One of many reasons a program like this is useful is that you can see all the uses of a specific variable in a program.  For example, running:

mygrep fpInput mygrep.c

will have the following output:

FILE *fpInput;

if ((fpInput = fopen(argv[2], "r")) == NULL)

while (fgets(line, 100, fpInput) != NULL)

You may be wondering if functions such as "printf" and "scanf" which can take a variable number of parameters do something like this.  Actually, they do not; they do something completely different.  In order to write a function other than "main" which takes a variable number of parameters, you must include a header file named "stdarg.h" which will also cause the compiler to link with the standard argument library, and then use a variety of provided functions to access the optional arguments passed to the function.  We will not cover this topic.

Subtopic 2: The "goto" statement

The next topic we will discuss is the "goto" statement.  Many expert programmers feel that the "goto" statement goes against the feel of structured programming and should never be used, but they are wrong.  While the "goto" statement can be abused if you use it too freely, and it is never absolutely necessary to use one, certain situations sometimes arise in which the use of "goto" is the cleanest, simplest, most readable way to accomplish a task.

Normally, the statements in your programs get executed sequentially.  When you are dealing with loops, a set of consecutive statements iterate as long as a condition is true, after which control moves to the first statement following the loop.  When you are dealing with "if" statements, certain statements may be skipped depending on whether or not a condition is met.  When you call a function, control jumps to the start of the function, and when you reach a "return" statement, control jumps back to point directly after the statement that called the function.

The "goto" statement allows execution of your program to jump from any location in your program to any other location within the same function.  In order to jump to a specific location, you have to assign that location a label.  A label has the same form as variable names and is followed by a colon.  By convention, it is usually typed on its own line and left justified.  The scope of a label is the entire function in which it appears.  To jump to the statement directly following the label, you use a "goto" statement, which consists of the "goto" command followed by the name of the label to which you want to jump.  If that label does not exist in the same function as the "goto" statement, you will get a compiler error.  Here is an example of a program using "goto".

#include "stdio.h"

void func(void);

int main(void)

{

  func();

  goto label2;

  printf("printf #1\n");

label1:

  printf("printf #2\n");

  goto label3;

label2:

  printf("printf #3\n");

  goto label1;

label3:

  return 0;

}

void func(void)

{

  goto label2;

label1:

  printf("printf #4\n");

label2:

  printf("printf #5\n");

  return;

}

The output of this program is:

printf #5

printf #3

printf #2

At the very beginning of "main", the function "func" is called.  The first statement in "func" causes control to jump to the statement following "label2" in "func", and "printf #5" is displayed.  Then the "return" statement forces control back to "main" following the call to "func".  The next "goto" statement jumps to the line following "label2" in "main", and "printf #3" is displayed.  The next "goto" statement jumps to the line following "label1" in "main" and "printf #2" is displayed.  The next "goto" statement jumps to the line following "label3" in "main" and the return forces "main" (and therefore the entire program) to end.

In previous lectures, we've seen many ways to display the string "Hello World!" to standard output three times.  Here's a way to do it using "goto":

#include <stdio.h>

int main(void)

{


int x = 0;

disp:


printf("Hello World!\n");


if (++x < 3)



goto disp;


return 0;

}

Almost every good programmer would consider this to be a bad use of the "goto" statement.  You shouldn't use "goto" to simulate a loop, because loops are more readable.  If you look at a "for" loop, for instance, used to print out "Hello World!" three times, it will be obvious right away what it does.  This might be obvious too, but only because it is such a simple task.  Sometimes, this type of use of "goto" can get really confusing, and it makes it harder to step through code to figure out what it does and why it works.  However, there is one reason that this code is interesting, and that reason is that it is closer in logic to the machine code that the program gets translated to.  In machine code, there are basic, simple commands to do arithmetic operations, check results against 0, and even to jump to somewhere else in the machine code, but there is no single operation to do something as complex as a loop.  When you compile code containing a loop, it breaks it down into parts.  With "for" loops and "while" loops, there is a check at the beginning of each iteration, and if a condition is not met, there is a jump to the code after the loop (the loop is skipped).  At the end of each iteration of the loop, there is an automatic jump back to the beginning (to the check).  With "do…while" loops, there is a check at the end of each iteration, and if a condition is met, there is a jump to back to the beginning of the loop.  The use of "goto" above is very similar to this, and it is closer to having a one-to-one correspondence with machine code.

A good use of the goto statement often occurs when you need to break out of nested loops.  The "break" statement would only break out of the inner loop, and to break out of several loops at once without using a "goto", you often need to set a boolean and perform extra checks.  If you want to keep track of the loop control variables at the point in which you are breaking out of the loop, you might also have to use extra variables to store them.  Consider the following example.  You are dealing with three large arrays of integers named "a", "b", and "c".  Each array contains "NUM_INTS" integers ("NUM_INTS" is some large, defined constant).  You want to determine if there is any integer that appears all three arrays.  As soon as such an integer is found, you will be able to stop looking.  If no such integer is found, some special action may need to be taken.  Here is one way to organize such code:

for (i = 0; i < NUM_INTS; i++)

{


for (j = 0; j < NUM_INTS; j++)


{



if (a[i] == b[j])



{




for (k = 0; k < NUM_INTS; k++)





if (a[i] == c[k])






goto found;



}


}

}

…

/* We only get here if no common integer found. */

…

found:

…

/* If we jump here from within the nested loop, i, j, and k will store the indices of the duplicate integers within the three arrays. */

…

Of course, it is possible to do this without a "goto".  You could just continue the three loops until the end, and store the values of "i", "j", and "k" in other variables when a duplicate is found, but this is inefficient, especially if the arrays are very large and you expect a duplicate to be found early on in the search.  Another thing you can do is set a boolean when the duplicate is found, and include this boolean in the conditions of all three "for" statements (or just the first two and break out of the third).  You would then also need an "if" statement checking the status of the boolean after the loops.  Personally, I think the code is more readable as written above, and this is how I would do it.

Another use of "goto" that I have seen in some very large programs with huge functions deals with error conditions.  Sometimes, functions are written with "error code" at the end of the function that handles the situation when something unexpected happens within the function.  Such error code might free up all memory allocated within the function, fix up variables, or do whatever it takes to ensure that the program won't crash.  Within large applications, you might want to give a warning that something is wrong and advise the user to save his or her work in a file.  Sometimes, extra checks are included in the middle of such large functions that check for things that are unexpected, and if something turns up, a "goto" statement is used to jump to the error handling code, skipping the rest of the function rather than risking a crash.  This is especially common when a bug is discovered in a large function that has already been written, possibly by another programmer.  Rather than rearranging the entire function to avoid the use of a "goto", an extra check is added to detect the trouble case, and if it happens, a "goto" is used to skip code that wouldn't work given the current state of things.

Subtopic 3: Pseudo-randomness

Every program or function we've looked at in this class has been completely deterministic.  Given the same input, the same output is produced.  Technically speaking, true randomness is impossible with modern computers, but sometimes, we want to simulate randomness.  For example, when writing a program to play a game, it would be nice if the computer could randomly choose between moves of equal quality so it wouldn't play the same game every time given the same moves by a particular user.

One of the standard libraries C provides (that which has header file "stdlib.h") contains a function called "rand" which takes no parameters and returns an integer.  Every time it is called, it returns a pseudo-random integer between 0 and RAND_MAX, which is a constant also defined in "stdlib.h".  C guarantees that RAND_MAX will be at least 32,767.  Let's say you want to generate a pseudo-random number in the range of 1 to 10 and assign it to the integer variable "x".  To convert a pseudo-random number in a specific range to a pseudo-random number from 1 to 10, you can take the remainder when the number is divided by 10 and add 1.  So the following statement can be used:

x = rand() % 10 + 1;

Remember, taking the modulus when a number is divided by 10 will give a number in the range from 0 to 9, so adding 1 gives a number in the range from 1 to 10.

Consider the following program:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{


int x, n;


for (x = 0; x < 5; x++)


{


n = rand()%10 + 1;



printf("Variable n = %d.\n", n);

}

return 0;

}

When I ran this on the magnum, I saw:

Variable n = 1.

Variable n = 6.

Variable n = 5.

Variable n = 2.

Variable n = 5.

When I ran it again I got… the same thing.  Every time you run this program on the same computer, you will see the same results.  The reason deals with the way that C generates random numbers.  It mathematically generates each random number based on the last, starting with a specific seed that has some default value.  The order of the numbers is unpredictable (if you haven't run the program before and don't know how the numbers are being generated) but deterministic given a specific starting point.

You can change this starting point, or seed, using the "srand" function provided in the same library as rand.  Consider the following program, with one extra statement added:
#include <stdio.h>

#include <stdlib.h>

int main(void)

{


int x, n;


srand(1000);


for (x = 0; x < 5; x++)


{


n = rand()%10 + 1;



printf("Variable n = %d.\n", n);

}

return 0;

}
When I ran this program on magnum, I got:

Variable n = 2.

Variable n = 9.

Variable n = 4.

Variable n = 5.

Variable n = 4.

However, I will still see this every time I run this particular program.  What we want to do is have an initial seed that is "more random" so that the program will behave differently every time it is run.  The most common way to do this is to use the "time" function, whose prototype statement is in the header "time.h".  You don't need to know exactly what this is doing.  It takes a pointer to a specific type of structure as an argument, but for the purpose of producing an initial seed for the random number generator, it is fine to just pass it NULL.  The function returns a value that represents the calendar date and time of day down to the second.  The exact representation is unimportant; The important thing is that if you call the function once at the start of your program, the exact value returned will be different every time (assuming you don't run the program twice within the same second).  So now consider the following program:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void)

{


int x, n;


srand(time(NULL));


for (x = 0; x < 5; x++)


{


n = rand()%10 + 1;



printf("Variable n = %d.\n", n);

}

return 0;

}
You will now see a different result every time the program is run (unless you run it twice in a row within one second).

A generalization of the use of "rand" to choose a random number in the range of "min" to "max", where "min" and "max" are both integers, is:

rand() % (max - min + 1) + min;

Next we will examine a program that randomly generates mazes of the appropriate format for the maze-solving program we examined earlier!  The output will consist of 10 rows (we will number the rows 0 through 9), each consisting of 10 columns (we will number the columns 0 through 9) followed by a newline.  The first row and last row will be all asterisks.  The other rows will start and end with an asterisk.  Before drawing the maze, the program will pick a pseudo-random row and column (both in the range 1 to 8) representing the position of the 'O' (starting position), and then a pseudo-random row and column representing the position of the 'X' (ending position).  While drawing the maze, for any position inside the maze that does not match the 'X' or the 'O', the program will pick a pseudo random number from 1 to 3, and write an asterisk ('*') if and only if a 1 is chosen, and write a space otherwise.  Here is the program:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void)

{


int rowX, colX, rowO, colO;


int row, col, x;


srand(time(NULL));


rowX = rand() % 8 + 1;


colX = rand() % 8 + 1;


do


{



rowO = rand() % 8 + 1;



colO = rand() % 8 + 1;


} while ((rowO == rowX) && (colO == colX));


printf("**********\n");


for (row = 1; row <= 8; row++)


{



printf("*");



for (col = 1; col <= 8; col++)



{




if ((row == rowX) && (col == colX))





printf("X");




else if ((row == rowO) && (col == colO))





printf("O");




else




{




x = rand() % 3 + 1;





if (x == 1)






printf("*");





else






printf(" ");




}



}



printf("*\n");


}


printf("**********\n");


return 0;

}

Just for fun, here is one maze that was generated by this program:

**********

*X *** * *

* **  ** *

*   * *  *

* ****   *

*    *  O*

* *     **

*  *   ***

**       *

**********

Note that the selection of "rowO" and "colO" are inside a "do…while" loop that ensures that they are not the same as "rowX" and "colX".  Inside the nested loop, if the pair ("row", "col") is the same as ("rowO", "colO") or ("rowX", "colX"), we write either the 'O' or 'X'; Otherwise, we pseudo-randomly write an asterisk (1/3 probability) or space (2/3 probability).

Subtopic 4: The "system" function

Next we are going to look at another function whose prototype statement is also in the "stdlib.h" header file.  The function is called "system".  It takes a string as a parameter representing a command for the operating system to execute.  For example, if programming for a Unix system, you can use the statement:

system("ls");

to list the contents of the current directory to standard output.  Or:

system("clear");

to clear your window.

Let's say we want to write a program that keeps track of the time and constantly writes it at the top of the Unix window.  To do this, we are once again going to use the "time" function we learned about earlier, but we need to understand it a little better.  The pointer it takes as a parameter is a pointer to a defined data type called "time_t" which is defined in "time.h".  If the value passed is not NULL, the variable to which it points gets filled in with the value representing the current time.  (If you assign the value of a variable of this type to an integer, it is cast without any problem.)  There exists another function called "ctime" in the same library as time that takes as a parameter a pointer to a variable of type "time_t" and returns a pointer to a string representing a readable representation of the date and time.  So, the clock program can be written as follows:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void)

{


time_t t;


while (1)


{



time(&t);



system("clear");



printf("%s", ctime(&t));


}


return 0;

}

If you run this program as is, you will find that it is hard to look at, and that it appears to flash on and off too often.  Really, you only want to update the display when the time changes, so you can improve the clock program as follows:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void)

{


time_t t, t_last;


while (1)


{



time(&t);



if (t != t_last)



{



system("clear");




printf("%s", ctime(&t));




t_last = t;



}


}


return 0;

}

Note that we are using "system" in all these programs.  In general, it is better to avoid using "system" within a C program, because the command you are passing to the function assumes a particular operating system, in this case Unix.  The rest of C is computer independent, and if you can compile it and it works on one system, it will probably work when you compile it on any other.

Subtopic 5: The "exit" function

We are just going to discuss one more function whose prototype statement is provided in "stdlib.h".  This function is "exit".  It takes one integer parameter.  The function forces the current program to terminate, and the parameter passed to exit is returned to the operating system (or whatever called the terminating program).  Within "main", using "exit" is equivalent to using "return", but "exit" has the advantage that it can be used to terminate the program from within any function.  Generally, passing a 0 to "exit" indicates normal termination after a successful run of the program (in which case a 0 is also passed to the operating system), whereas passing any other value indicates some sort of unexpected error (and some non-zero number will also be passed to the operating system).  It is also possible to call a program from another program and check its return value.  So let's say we want to write a function called "quit" which says goodbye to a user when the user is finished using an application.  It might look like this:

void quit(void)

{


printf("Goodbye!\n");


exit(0);

}

Note that we never return from this function since the "exit" statement ends the program's execution.

