CS102: Topic #14 - Solving Mazes

We are going to examine a program that reads a maze from a file called “maze.txt” and displays the shortest path from the start to the finish. If more than one path of this length exists, only one such path will be displayed.

The maze will be represented using ASCII characters in the file "maze.txt". The maze will consist of exactly 10 rows, and each row will consist of exactly 10 columns. Every row will be followed by a newline character. Most characters in the maze will be either an asterisk, which represents a wall, or a space, which represents an empty space. We will assume that the border of the maze (the surrounding 10 by 10 square) will consist of all asterisks. There will also be a single 'O' somewhere within the maze, which represents the starting position in the maze, and a single 'X', which represents the ending position in the maze.

The program relies on a recursive function called "solve_maze" which gets passed the maze such that each slot which represents part of the path from the starting point of the maze to the current position is filled in with an 'O'. It also gets passed integers representing the current row and column (the ending position of the path so far), and also an integer representing the length of the path so far. It recursively tries to continue the current path to solve the maze. Whenever a solution is found, the length of this solution is compared to the length of the best solution previously found (stored in a global called "lengthBest"). If the new solution beats the old one, the value of "lengthBest" is updated, and the current maze is copied into "mazeBest" (also a global).

An example of a valid "maze.txt" file is:

* *

* ** * *O*

* * ***

* * *X*

**** *** *

* * *

* *** ** *

* * *

While there exists a simple, non-recursive algorithm to solve a maze that is guaranteed not to contain loops, solving a maze that may contain loops in a fairly simple manner requires recursion. This program we are going to examine will for any maze adhering to the above specifications; there can be loops or large blocks of empty space. The solution has exponential time complexity, but it can be used to solve small mazes in reasonable time.

A run of the program with "maze.txt" representing the maze pictured above would display:

Starting maze:

* *

* ** * *O*

* * ***

* * *X*

**** *** *

* * *

* *** ** *

* * *

Best solution found:

* OOOOO*

* **O* *O*

* O* ***

* O* *X*

****O***O*

* OO *O*

* ***O**O*

* * OOOO*

Here is another sample run based on another valid maze:

Starting maze:

* X*

* *

* *

* *

* *

* *

* *

*O *

Best solution found:

OOOOOOOX

*O *

*O *

*O *

*O *

*O *

*O *

*O *

Note that there were many possible solutions of equal length for the above maze, and any one of them would have been valid, but this is the one that was chosen by the implementation we will examine. It is also possible that a maze may have no solutions, and this case also be handled by the program in a reasonable manner.

The program starts off as follows:

/*

 * This program reads a maze from the file "maze.txt",

 * then finds and displays the shortest path from start to finish

 * in the maze.

 */

#include <stdio.h>

#define NUMROWS 10

#define NUMCOLS 10

#define INFINITY 999999

int read_maze(char [][], int *, int *);

void display_maze(char [][]);

void copy_maze(char [][], char[][]);

void solve_maze(char [][], int, int, int);

char mazeBest[NUMROWS][NUMCOLS]; /* Stores best maze found so far. */

int lengthBest = INFINITY; /* Stores length of best maze found so far. */

So the program contains four functions in addition to maze. The function "read_maze" reads in the maze from the text file, "display_maze" outputs a maze to standard output, "copy_maze" is used to copy a maze from one two-dimensional array to another, and "solve_maze" is the recursive routine that solves the maze.

The program makes use of two globals. One of them, "mazeBest", is a two-dimensional array that stores the maze including the best path from start to finish found so far. If a better is found later, this global will be updated. The other, "lengthBest", is an integer storing the length of the shortest path found so far (the one currently represented in "mazeBest"). It starts off as the defined constant "INFINITY" which is a number that is larger than any valid solution.

Here is the "main" function of our program:

int main(void)

{

char maze[NUMROWS][NUMCOLS]; /* Stores maze read from input file. */

int startRow, startCol; /* Starting point in maze. */

if (read_maze(maze, &startRow, &startCol) == 0)

{

printf("Error reading maze from file maze.txt!\n");

return;

}

printf("Starting maze:\n");

display_maze(maze);

solve_maze(maze, startRow, startCol, 0);

if (lengthBest == INFINITY)

{

printf("\nNo path to goal was found in maze!\n");

return;

}

else

{

printf("\nBest solution found:\n");

display_maze(mazeBest);

}

return;

}

Note that the local "maze" in "main" is a different two-dimensional array of characters from the global "mazeBest". The function "main" starts off by calling "read_maze" which will fill in this array with a representation of the maze in "maze.txt" and fill in the values of "startRow" and "startCol" with the row and column of the 'O' in the maze. Note that we are passing the memory addresses of these two variables to "read_maze" so that it will be able to fill in the values. If "read_maze" fails, it will return a 0 (FALSE), and "main" will display an appropriate error message to the user and end.

Assuming that "maze" was filled in OK, "main" calls a function "display_maze" to display the starting maze (contained in the variable "maze") to standard output. Then it calls the function "solve_maze" passing the original maze, the starting position (row and column), and 0, which represents the length of the path so far (since we haven't moved anywhere yet). Assuming that "solve_maze" finds any valid solution, the length of the best will be stored in "lengthBest", and so upon the return of "solve_maze", if the value of "lengthBest" is still "INFINITY", there must be no valid path to the goal. If this is the case, "main" will display an appropriate error message to the user; otherwise, it will display "mazeBest", which will contain the shortest path found from start to finish.

Below is the "read_maze" routine that reads the maze from the "maze.txt" text file:

/*

 * Read maze from "maze.txt".

 * Fill in *sRow and *sCol with position of 'O'.

 * If error, return 0, else return 1.

 */

int read_maze(char maze[NUMROWS][NUMCOLS], int *sRow, int *sCol)

{

FILE *fpMaze;

int row, col;

/* Open maze text file, make sure it opens OK. */

if ((fpMaze = fopen("maze.txt", "r")) == NULL)

return 0;

/* Loop through the rows. */

for (row = 0; row < NUMROWS; row++)

{

/* Loop through the column in current row. */

for (col = 0; col < NUMCOLS; col++)

{

maze[row][col] = getc(fpMaze);

/* Check if this is the starting position. */

if (maze[row][col] == 'O')

{

*sRow = row;

*sCol = col;

}

}

/* Ignore newline at end of each row. */

getc(fpMaze);

}

return 1;

}

The beginning of the routine tries to open "maze.txt". If there is a problem (e.g. the file doesn't exist), the routine returns a 0 (FALSE).

Otherwise, nested loops are used to loop through the rows and columns of the text file. Each character is read and inserted into the appropriate slot of the two-dimensional array of characters passed in as a parameter. Each character is also checked to see if it is an 'O' (the starting position in the maze); if so, the variables pointed to by "sRow" and "sCol" (pointer parameters of "read_maze" pointing to variables whose addresses were passed) are filled in with the current row and current column respectively. The call to "getc" at the end of the outer loop is used to ignore the newline character at the end of each row of the text file.

As written here, this routine is assuming that the file "maze.txt" contains the maze in the appropriate format if such a file exists. There could have been many extra checks. For example, if at any point, any character being inserted into the two-dimensional array was not an asterisk, space, 'X', or 'O', the routine could have returned 0. If a newline was not found when expected, the routine could have returned 0. If an 'O' was never found (a boolean could be initialized to FALSE and changed to TRUE when 'O' is encountered), the routine could have returned 0. We might also want to check that the border of the array is formed of asterisks and that there are no characters left over at the end of the file.

The following routine displays the passed maze to standard output:

/* Display the maze passed as a parameter to standard output. */

void display_maze(char maze[NUMROWS][NUMCOLS])

{

int row, col;

for (row = 0; row < NUMROWS; row++)

{

for (col = 0; col < NUMCOLS; col++)

{

putchar(maze[row][col]);

}

putchar('\n');

}

return;

}

The routine is simple and probably does not need much explanation. Nested loops are used to loop through the rows and columns of the two-dimensional array and each is displayed to standard output. A newline is added at the end of each row.

The following routine copies a source maze (contained in a two-dimensional character array) to a destination maze (which will be stored in another passed array):

/* Copy the maze in mazeSrc to mazeDest. */

void copy_maze(char mazeSrc[NUMROWS][NUMCOLS],

 char mazeDest[NUMROWS][NUMCOLS])

{

int row, col;

for (row = 0; row < NUMROWS; row++)

{

for (col = 0; col < NUMCOLS; col++)

{

mazeDest[row][col] = mazeSrc[row][col];

}

}

return;

}

Note that we do not need to pass the address of the two-dimensional array that we are copying to. Remember, the name of an array is a pointer constant to the first element of the array, and when you pass an array to a function, that function can change the contents of the array. So the routine is very straightforward, copying one element at a time.

Here is the recursive routine that solves the maze:

/*

 * Given:

 * (1) maze with path so far

 * (2) current row

 * (3) current column

 * (4) length of path so far

 * The function solve_maze recursively tries to solve the maze.

 *

 * When a solution is found, compare it to previous best found solution,

 * and update appropriate globals if necessary.

 */

void solve_maze(char mazeCur[NUMROWS][NUMCOLS], int curRow, int curCol, int length)

{

/* If already as long as best solution, no need to look further. */

if (length >= lengthBest)

return;

/* Check if solution found. */

if ((mazeCur[curRow-1][curCol] == 'X') ||

(mazeCur[curRow+1][curCol] == 'X') ||

(mazeCur[curRow][curCol+1] == 'X') ||

(mazeCur[curRow][curCol-1] == 'X'))

{

/* Found solution, better then previous best, update globals. */

lengthBest = length;

copy_maze(mazeCur, mazeBest);

return;

}

/* Recurse in each possible direction that is empty. */

if (mazeCur[curRow-1][curCol] == ' ')

{

mazeCur[curRow-1][curCol] = 'O';

solve_maze(mazeCur, curRow-1, curCol, length+1);

mazeCur[curRow-1][curCol] = ' ';

}

if (mazeCur[curRow+1][curCol] == ' ')

{

mazeCur[curRow+1][curCol] = 'O';

solve_maze(mazeCur, curRow+1, curCol, length+1);

mazeCur[curRow+1][curCol] = ' ';

}

if (mazeCur[curRow][curCol-1] == ' ')

{

mazeCur[curRow][curCol-1] = 'O';

solve_maze(mazeCur, curRow, curCol-1, length+1);

mazeCur[curRow][curCol-1] = ' ';

}

if (mazeCur[curRow][curCol+1] == ' ')

{

mazeCur[curRow][curCol+1] = 'O';

solve_maze(mazeCur, curRow, curCol+1, length+1);

mazeCur[curRow][curCol+1] = ' ';

}

return;

}

The parameter "mazeCur" contains the maze including the path so far (indicated by 'O' characters). For instance, with the first example maze above, at some point the array may contain a representation of the following:

* OOO*

* ** *O*O*

* *O***

* * *X*

**** *** *

* * *

* *** ** *

* * *

In this case, "curRow" would get passed 3, "curCol" would get passed 6, and "length" would get passed 5. (The top left of the maze is row 0, column 0.) So we have taken 5 steps from the starting point and are currently proceeding down a dead end. Technically, we don't really need the "length" parameter as it can be determined from "mazeCur" by counting the number of 'O' characters and subtracting one, but it makes things simpler to have it.

The start of the routine checks to see if "length" is greater than or equal to "lengthBest". If the length of the path so far is already as long as the best solution found so far, there is no need to check any further, so we just return. This check isn't necessary for the correctness of the routine, but it can be a large time-saver. In fact, for the second sample maze shown earlier, without this check the routine takes too long to run.

Assuming this is not the case, the routine checks to see if the 'X' is next to the current position. If so, we have found a path to the goal; and since the first "if" statement's condition was not true, we know that "length" is less than "lengthBest", and the current solution is the best so far. So we store this length in the global "lengthBest" and update the global "mazeBest" by using "copy_maze" to copy the maze from "mazeCur". This is a base case of the recursive routine.

Next we check each of the four possible directions we might want to move from the current position. For each that is empty (i.e. there is no wall and we have not already been to that square with the current path), we put an 'O' and the appropriate slot of the two-dimensional character array (i.e. we take one step in the direction we are checking) and make a recursive call to "solve_maze" with updated values of curRow, curCol, and length. (There is no need to change the values of the parameters within the given iteration of the function.) When the recursive call to "solve_maze" returns, it must have finished traversing all paths starting with the new starting path, finding all solutions, if any, starting that way. We then take out the 'O' we added (i.e. we put back a space in the appropriate slot of the maze) and look at the next direction. It is important to put back the space so that there won't be leftover 'O' characters in future solutions and potential shorter solutions will not be blocked by 'O' characters that are not actually part of the current path.

After the four "if" statements in which there are potential calls to "solve_maze" are complete, we have exhausted all possible paths starting with the current path and we return. Not that if we are at the end of a dead end and there is no place to go (another base case), all four "if" statements will have false conditions, and we will just return, so we didn't have to check for this base case explicitly.

This, of course, is not the only way the function could have been done. Another possibility is to traverse in all four recursive directions automatically (even if they are not empty). At the start function, we can check if the current position represents a wall or a space that has already been visited (base cases), and if so, we just return. Otherwise, we add an 'O' to the current position and continue with the routine. Then the solve_maze routine would look like this (the comment above it would stay the same):
void solve_maze(char mazeCur[NUMROWS][NUMCOLS], int curRow, int curCol, int length)

{

/* If already as long as best solution, no need to look further. */

if (length >= lengthBest)

return;

/* Check if solution found. */

if (mazeCur[curRow][curCol] == 'X')

{

/* Found solution, better then previous best, update globals. */

lengthBest = length;

copy_maze(mazeCur, mazeBest);

return;

}

/* If we walked into a wall or previously visited square, back up. */

if (mazeCur[curRow][curCol] != ' ')

return;

/* Mark the newly visited square. */

mazeCur[curRow][curCol] = 'O';

/* Recurse in all possible directions. */

solve_maze(mazeCur, curRow-1, curCol, length+1);

solve_maze(mazeCur, curRow+1, curCol, length+1);

solve_maze(mazeCur, curRow, curCol-1, length+1);

solve_maze(mazeCur, curRow, curCol+1, length+1);

/* Unmark this square, we are backtracking. */

mazeCur[curRow][curCol] = ' ';

return;

}
If we make this change, we would also need to change the call to this function from "main". Instead of just calling the routine once with the starting position (in which case, this function would think it walked back into its own path and just return), we need to make four calls as follows:

solve_maze(maze, startRow-1, startCol, 1);

solve_maze(maze, startRow+1, startCol, 1);

solve_maze(maze, startRow, startCol-1, 1);

solve_maze(maze, startRow, startCol+1, 1);

