CS102: Topic #17 - Linked Lists

The next topic we will discuss is linked lists. Implementations of linked lists rely on structures, pointers, and dynamic memory allocation combined.

When we first discussed arrays, we examined a program that allows the user to enter 10 numbers and prints them out in reverse order. When we first discussed dynamic memory allocation using "malloc", we examined a program that allows the user to specify how many numbers he or she wants to enter, then to enter the numbers, and then the program would print them out in reverse order. With arrays, the programmer had to know in advance how many numbers would be entered. Using "malloc" and dynamic memory allocation, the user had to know in advance how many numbers would be entered.

Many applications such as database systems, spreadsheets, and word processors allow users to continuously enter new data as long as there is memory left in the computer. The computer can not just allocate enough memory for a document of maximum size, because this would be extremely wasteful and possibly not leave enough memory for other things running on the computer. What needs to be done is that the computer must allocate memory for a small amount of data at a time, and when it runs out, it must allocate more. One aspect of this that makes things confusing is that the allocated memory will not likely be contiguous; in other words, you will be storing data in various locations of physical memory.

Let's look at a simplified example. Let's say you wish to write a program which allows the user to type in integers one at a time until he or she signals EOF (on most Unix systems, this is signaled by pressing Ctrl-D). You don't know in advance how many integers will be entered, and neither do they. When EOF is encountered, the program should print out all integers entered in reverse order.

The general idea is this: Define a structure with two fields. One field will contain an integer that the user enters, and the other field will contain a pointer to a structure of the same type (the one that contained the previously entered integer). Each time the user enters an integer, allocate enough memory to hold one structure. Fill in the integer, and fill in the pointer to point to the previous structure. If this is the first structure, its pointer should be a NULL pointer. After all integers have been entered, start at one structure, print out the integer stored there, and then walk to the next structure and do the same, etc. These pointers from one structure to another are referred to as links, and the set of all structures together is referred to as a linked list. The beginning of a linked list is a pointer to the first structure.

We will define the following structure to use for this program:

typedef struct node

{

int x;

struct node *next;

} NODE;

typedef NODE *PNODE;

It is common to refer to the individual structures in a linked list as nodes of the linked list. Above, we are saying that each "NODE" will contain an integer (the field "x") and a pointer to the next node. Often, programmers choose to call the field containing the pointer link to the next structure either "next" or "link". We also define "PNODE" to be a pointer to a node.

The fact that we actually want to display the integers entered in reverse order will actually make things a little easier for us! We can just insert each new structure at the start of the list so far.

Here is the code:

#include <stdio.h>

typedef struct node

{

int x;

struct node *next;

} NODE;

typedef NODE *PNODE;

int main(void)

{

int x;

PNODE pList = NULL, pTemp;

printf("Enter numbers one at a time, Ctrl-D to stop.\n");

while(1)

{

if (scanf("%d", &x) == EOF)

break;

pTemp = (PNODE) malloc (sizeof(NODE));

if (pTemp == NULL)

{

printf("Out of memory, could not store number!\n");

}

else

{

pTemp->x = x;

pTemp->next = pList;

pList = pTemp;

}

}

for (pTemp = pList; pTemp != NULL; pTemp = pTemp->next)

{

printf("%d\n", pTemp->x);

}

return 0;

}

Note that we need to declare two "PNODE" variables. One is "pList", which should always point to the beginning of the linked list. The other is "pTemp", which we use to allocate new nodes that we want to set up and also to walk along the final list. At the beginning of the program, "pList" is set to NULL, so we are dealing with an empty list. If the user hits Ctrl-D right away, it will stay empty, we will exit the "while" loop, and the "for" loop will be skipped because the condition it depends on is false right away.

Once in the "while" loop, we allow the user to enter integers. Each time an integer is entered, we need to set up a new node structure in which to store it. To do this, we use "malloc". The "malloc" function, as always, takes as a parameter the number of bytes we need allocated. In this case, we need enough bytes to store one "NODE" structure, which is "sizeof(NODE)". We also could have said "sizeof(struct node)", the two are equivalent because of the type definition. If the call to "malloc" returns NULL, we inform the user that no memory was available. We might want to exit the loop at this time with a "break" statement, but as implemented here, the program will loop back and ask for another integer. Perhaps memory currently used by some other application will be freed, and we'll be able to allocate space for a node in the future. Assuming we successfully allocate memory for a node, we fill in its "x" field with the integer entered by the user. We then have this node point to the beginning of the list so far, and update the start of the list to point to the newest node. (If this is the first node entered, the previous value of "pList" will be NULL, so the current node's "next" link will take the value of NULL, and "pList" will be updated to point to the current node.)

After Ctrl-D is entered (or an EOF is encountered if reading from a file), we exit the "while" loop. The "for" loop then starts "pTemp" pointing to the first node of the linked list. For each iteration of the "for" loop, we display the integer stored in the current node to standard output, and after each iteration we update "pTemp" to point to the next node by setting it equal to the current node's "next" field. After printing out the last integer in the list, "pTemp" will take the value of NULL (the value of the "next" field in the last node of the linked list, which was the first one created), and the "for" loop will end.

There's one thing that is a little bit messy about this program, namely that we are never freeing the memory that we allocate. It's OK because the memory will be freed automatically when the program ends, which happens right after the "for" loop to print out the values, but to be clean and maintain good habits, it might have been better to include code which explicitly frees the memory. This could have been done with a "while" loop right before the final "return" statement as follows:

while (pList != NULL)

{

pTemp = pList->next;

free(pList);

pList = pTemp;

}

So, for each iteration of the loop, we use "pTemp" to store the address of the next node in the list, then we free the node that "pList" points to and update "pList" to point to the next node.

It is actually a bit more complicated to write a similar program that allows the user to enter integers one at a time until EOF is triggered and then prints them out in the same order that they were entered. In this case, each new node that gets created has to be inserted at the end of the list so far. One way to do this is to traverse the entire list every time a new node is created, and when the end of the list is found, insert the new node after it. A more efficient method is to keep track of the end of the list as you go along. You also need to keep track of the beginning of the list so that you can start a traversal of the list there at the end when you want to print out the integers. Here is the code:

#include <stdio.h>

typedef struct node

{

int x;

struct node *next;

} NODE;

typedef NODE *PNODE;

int main(void)

{

int x;

PNODE pList = NULL, pEnd = NULL, pTemp;

printf("Enter numbers one at a time, Ctrl-D to stop.\n");

while(1)

{

if (scanf("%d", &x) == EOF)

break;

pTemp = (PNODE) malloc (sizeof(NODE));

if (pTemp == NULL)

{

printf("Out of memory, could not store number!\n");

}

else

{

pTemp->x = x;

pTemp->next = NULL;

if (pEnd == NULL)

{

pList = pTemp;

pEnd = pTemp;

}

else

{

pEnd->next = pTemp;

pEnd = pTemp;

}

}

}

for (pTemp = pList; pTemp != NULL; pTemp = pTemp->next)

{

printf("%d\n", pTemp->x);

}

return 0;

}

Now, after each new node is created, the integer field of the node is filled in with the value that the user entered, and since this will become, at least temporarily, the last node of the linked list, its "next" field is set equal to NULL. Then the code checks to see if "pEnd" is currently equal to NULL. If so, this is the first node we are adding to the linked list (and, for now, it will also be the last node of the linked list), so both "pList" and "pEnd" point to the new node. Otherwise, the list has already been started, and "pList" points to the beginning of it so that pointer does not have to be updated. Instead, the previous node (the node pointed to by "pEnd") gets its "next" field updated to point to "pTemp", and then "pEnd" gets updated to point directly to "pTemp" (i.e. the last node).

Now we will look at a program that once again allows the user to enter one integer at a time until EOF is indicated, but this time, at the end, we want to print out the final list in sorted order. Rather than create the entire linked list and then sort it, we will keep it sorted as we go along. Each time a new node is added, we will find its correct position in the current list and insert it there. Thus we are using a sorting method similar to insertion sort. If the new node gets inserted at the very beginning of the list (because it has the smallest value so far), the pointer to the head of the list needs to also be updated.

The program is getting larger now, so rather than put everything in "main", we will write separate routines to create a node and to insert a node into the list so far. When calling the routine to insert a node, we need to pass it a pointer to the beginning of the list (so it can traverse the list and find the correct position for the new node) and the new node to be inserted. We also must keep in mind that the pointer to the beginning of the list may need to be changed, but remember that when passing a pointer to a function, the function can permanently change the value that the pointer points to, but it can not permanently change where the pointer points. There are at least three ways to deal with this problem. One would be to pass the function the memory address of the pointer (hence, a pointer to a pointer). A second would be to make sure that the linked list starts with a dummy node which always remains as the first node of the list and doesn't store any significant data. We will take a third approach, which is to have the called function return a pointer to the beginning of the list after the insert takes place, and the calling function sets its pointer to the beginning of the list to this return value. If the new node gets inserted at the beginning of the list, the called function returns a pointer to this new node, and the calling function updates its pointer to the beginning of the list; Otherwise, the called function returns the same pointer it was passed, and the calling function sets its pointer to the beginning of the list to itself, which has no negative effect.

#include <stdio.h>

typedef struct node

{

int x;

struct node *next;

} NODE;

typedef NODE *PNODE;

PNODE create_node(int);

PNODE insert_node(PNODE, PNODE);

int main(void)

{

int x;

PNODE pList = NULL, pTemp;

printf("Enter numbers one at a time, Ctrl-D to stop.\n");

while(1)

{

if (scanf("%d", &x) == EOF)

break;

pTemp = create_node(x);

if (pTemp != NULL)

{

pList = insert_node(pList, pTemp);

}

}

for (pTemp = pList; pTemp != NULL; pTemp = pTemp->next)

{

printf("%d\n", pTemp->x);

}

return 0;

}

/* Creates a node for given data and return pointer to it. */

PNODE create_node(int x)

{

PNODE pTemp;

pTemp = (PNODE) malloc (sizeof(NODE));

if (pTemp == NULL)

{

printf("Out of memory, could not store number!\n");

}

else

{

pTemp->x = x;

pTemp->next = NULL;

}

return pTemp;

}

/* Inserts node pNew into pList, keeping list in sorted order. */

PNODE insert_node(PNODE pList, PNODE pNew)

{

PNODE pPrev, pCur;

/* Inserting pNew into an empty list, it just becomes list. */

if (pList == NULL)

return pNew;

/* If pNew->x is less than pList->x, pNew becomes start of the list. */

if (pNew->x < pList->x)

{

pNew->next = pList;

pList = pNew;

return pList;

}

/* Otherwise, find its position and put it there. */

pPrev = pList;

pCur = pList->next;

while ((pCur != NULL) && (pCur->x < pNew->x))

{

pPrev = pCur;

pCur = pCur->next;

}

pNew->next = pCur;

pPrev->next = pNew;

return pList;

}

So "main" is now pretty simple. It continuously allows the user to enter integers until EOF is signaled. For each integer entered, a call to "create_node" is performed to create the node storing this integer, and a call to "insert_node" is called to add this node to its correct position in the linked list.

The "create_node" routine is a simple routine that tries to allocate memory for a new node. If it succeeds, it sets the fields of the node and returns a pointer to it. Otherwise, it informs the user that memory was not available and returns NULL.

The "insert_node" routine is a little more complicated. It is passed a pointer to the beginning of a linked list and a pointer to a node to insert in that list. It assumes the list is already in sorted order, and it wants to keep the list in sorted order.

To simplify things, two special cases are handled at the beginning. If "pList" is NULL, then there was no previous list, so "pNew" becomes the list, and this pointer is returned. If "pList" exists and the data in "pNew" is less than the data in "pList" (the first node of the linked list), "pNew" is updated so that its "next" field points to "pList", and then "pList" is updated to point to "pNew" (the new beginning of the list), after which "pList" is returned. (We could have just returned "pNew" after updating its "next" field.)

Otherwise, we have to search the list for the position in which to insert "pNew" into the list. We make use of two other pointers to nodes, namely "pPrev" and "pCur". We start off with "pPrev" pointing to the first node (the node pointed to by "pList") and "pCur" pointing to the second node. We keep updating these two pointers (by setting "pPrev" to "pCur" and then "pCur" to "pCur->next") until "pCur" becomes NULL or the data in "pCur" is greater than or equal to the data in "pNew". At this point, we know we want to insert the new node "pNew" in between "pPrev" and "pCur", so we do this with the last two assignments and return "pList" (still pointing to the beginning of the list).

The order of the two conditions of the "while" statement is actually very important. When evaluating a boolean expression consisting of a series of clauses separated by "&&" statements, they are evaluated from left to right, and as soon as one is false, the others are not evaluated at all. (There is no need to evaluate the rest, since we already know that they are not all true.) So if "pCur" is NULL, then the first clause is false, and we don't evaluate the expression "(pCur->x < pNew->x)". This is a good thing, because if we tried to evaluate this expression while pCur was NULL, it would cause a crash! If you try to use indirection on any NULL pointer, including using the selection operator on a NULL pointer to a structure, this is an example of referencing through a NULL pointer, which causes a crash.

We are now going to look at a routine that accepts a pointer to a linked list and searches for a particular item of data. If it finds it, it returns a pointer to the first node that contains this data; otherwise, it returns NULL. The routine assumes that PNODE is a pointer to a structure as defined in the previous programs.

/* Search for a node with given data in a linked list.

 * Return a pointer to the first such node, or NULL if no such node exists. */

PNODE search_list(PNODE list, int x)

{

PNODE walker;

for (walker = list; walker != NULL; walker = walker->next)

if (walker->x == x)

break;

return walker;

}

Note that at the end of the "for" loop, walker must either point to a node whose numeric field contains the value "x", or it must be NULL (those are the only two ways the loop would end). Furthermore, if there is a node with the value "x" anywhere in the list, it will be found before we reach the end of the list.

This might seem somewhat useless, but similar search routines can be very useful when dealing with linked lists whose nodes are more complex structures containing multiple fields. For example, let's say that each node is a structure containing fields that store a person's name, telephone number, and address. You might want to search the linked list for a structure containing a given name, and when the node is returned, if it isn't NULL (meaning such a node was found), print out the telephone number and address. Although all the routines we have looked at so far assume nodes with the specific structure defined above, there is nothing in the algorithms we are using that require this, and it should be very simple to tweak these routines to work with nodes with different structure.

Let's say you are keeping a linked list of items and their corresponding prices. A node might then be defined as follows:
typedef struct node

{

char item[100];

int price;

struct node *next;

} NODE;

typedef NODE *PNODE;

The "item" field of each node would be a string that gives the name or description of an item, and "price" might be the price of the item in dollars. Let's say you decide that you can't consider purchasing any item over 1000 dollars and want to delete the nodes corresponding to all such items from your list. Here is a routine to do that:

/* Deletes all nodes from pList whose price is greater than cutoff.

 * Returns a pointer to the beginning of the new list. */

PNODE delete_nodes(PNODE pList, int cutoff)

{

PNODE pPrev, pCur;

pPrev = NULL;

pCur = pList;

while(pCur != NULL)

{

if (pCur->price > cutoff)

{

/* Deleting first node is special case. */

if (pPrev == NULL)

{

pList = pList->next;

free(pCur);

pCur = pList;

}

else

{

pPrev->next = pCur->next;

free(pCur);

pCur = pPrev->next;

}

}

else

{

pPrev = pCur;

pCur = pCur->next;

}

}

return pList;

}

So "pCur" walks through the linked list, and "pPrev" should always refer to the node previous to "pCur", unless "pCur" refers to the first node in which case "pPrev" is NULL. For each node, we compare its price to the cutoff. If the price is too high, we want to delete the node from the linked list. If "pPrev" is NULL, we are deleting the first node. We therefore have "pList" point to the second node of the list, free the memory associated with the first node, and update "pCur" to point to "pList" (the new start of the list). The next iteration of the loop will check this next node, which is now the first node of the current version of the list. If "pPrev" is not NULL, we delete the node associated with "pCur" by ensuring that the previous node points to the next node, then freeing the memory of the current node and updating "pCur" to point to the next node. If the price of the current node is not too high, we simple move the two pointers forwards by moving "pPrev" to "pCur" and pushing "pCur" forwards one node. Eventually, "pCur" will walk off the end of the list and become NULL, and the loop will end. At this point, "pList" will point to the beginning of the (possibly) shortened list, and we return it.

To call the routine, we need to remember to assign the return value to the pointer that points to the beginning of the list. In other words, a call might look like this:

pList = delete_nodes(pList, 1000);

If we don't assign the return value back to the original list and we wind up deleting the first node of the list, "pList" will wind up pointing to memory that has been freed. We will likely crash soon, and if nothing else, will not notice that this first node has been deleted.
So far, all examples using linked lists kept the contents of nodes unchanged once they were added to the list. This is not always the case. Let us consider an alternative way to handle the sorting problem. Last time, each time an integer was entered, a node for that integer was created, and that node was added to a linked list of integers, maintained in sorted order. If a specific integer was entered multiple times, a separate node was created for each instance of the integer, and these nodes would appear next to each other in the sorted list. Now, instead, there will be only one node for each distinct integer, and in addition to the integer, a separate field will contain a count of how many times that integer was added. The structure of each node might therefore be defined as follows:

typedef struct node

{

int x;

int count;

struct node *next;

} NODE;

typedef NODE *PNODE;

Here is the entire program that uses this node structure and allows the user to enter integers until EOF is signaled, at which time the program will list all of the integers in sorted order:

#include <stdio.h>

typedef struct node

{

int x;

int count;

struct node *next;

} NODE;

typedef NODE *PNODE;

PNODE create_node(int);

PNODE insert_integer(PNODE, int);

int main(void)

{

int x;

PNODE pList = NULL, pTemp;

printf("Enter numbers one at a time, Ctrl-D to stop.\n");

while(1)

{

if (scanf("%d", &x) == EOF)

break;

pList = insert_integer(pList, x);

}

for (pTemp = pList; pTemp != NULL; pTemp = pTemp->next)

{

for (x = 0; x < pTemp->count; x++)

printf("%d\n", pTemp->x);

}

return 0;

}

/* Creates a node for given data and return pointer to it. */

PNODE create_node(int x)

{

PNODE pTemp;

pTemp = (PNODE) malloc (sizeof(NODE));

if (pTemp == NULL)

{

printf("Out of memory, could not store number!\n");

}

else

{

pTemp->x = x;

pTemp->count = 1;

pTemp->next = NULL;

}

return pTemp;

}

/* Increase count of integer x or insert new node in sorted list. */

PNODE insert_integer(PNODE pList, int x)

{

PNODE pPrev, pCur, pNew;

/* Check if we are starting new list. */

if (pList == NULL)

{

pNew = create_node(x);

return pNew;

}

/* Otherwise, find its position and put it there. */

pPrev = NULL;

pCur = pList;

while ((pCur != NULL) && (pCur->x < x))

{

pPrev = pCur;

pCur = pCur->next;

}

if ((pCur != NULL) && (pCur->x == x))

{

/* Integer has occurred before, increase count. */

pCur->count = pCur->count + 1;

}

else if (pPrev == NULL)

{

/* New integer is first in list up to this point. */

pNew = create_node(x);

pNew->next = pList;

pList = pNew;

}

else

{

/* New integer goes between pPrev and pCur. */

pNew = create_node(x);

pNew->next = pCur;

pPrev->next = pNew;

}

return pList;

}

If you compare this program to the one from last time, you will find it very similar. We no longer call "create_node" from "main", because not all integers entered require a new node to be created. We've changed the insert function from "insert_node", which takes a node to be inserted, to "insert_integer", which takes an integer to be inserted. If the integer was already in the list, we just increase the count of its node; otherwise, "insert_integer" will call "create_node" to create the new node. The "create_node" routine is almost identical to the one from last time, but it also initializes the "count" field of the node to 1 (since this is the first time the integer was seen, or we wouldn't be creating a new node for it).

The "insert_integer" function first checks to see if we are starting with an empty list. If so, a new node (with a count of 1) is created for the passed integer "x", and this node becomes the new list. Otherwise, a search of the list is executed which finds the first node in the list whose data is an integer greater than or equal to "x". If the data in the node is "x", the count of this node is increased. Otherwise, if "pPrev" is NULL, a new node (with a count of 1) is created for "x", and this node becomes the start of the list so far. Otherwise, a new node (with a count of 1) is created for "x", and this node is inserted between the previous node and the current node.

Back in "main", when displaying the list in sorted order, for each node, we loop from 0 through "count-1" to display the integer represented by the given node "count" times, since that is how many times it was entered by the user.

Deleting an integer from a list with this type of structure also becomes a bit more complex. In order to delete an instance of an integer, we must first search the list for the node whose data is this integer. Assuming it exists, if its count is greater than one, we simply decrease the count by one, while if its count is exactly one, we actually delete the node by updating the link of the previous node and freeing the memory associated with the current node. We won't examine the actual code.

Now, we will examine two ways to reverse a linked list. The data stored in each node doesn't matter, and we are assuming that the link from each node to the next is called "next". The first function we will look at is an iterative (non-recursive) solution. Here is a function that takes a linked list as a parameter, reverses it, and returns a pointer to the beginning of the reversed list:

PNODE reverse_list(PNODE pList)

{

PNODE pPrev, pCur, pNext;

if (pList == NULL)

return NULL;

pPrev = NULL;

pCur = pList;

do

{

pNext = pCur->next;

pCur->next = pPrev;

pPrev = pCur;

pCur = pNext;

} while (pCur != NULL);

return pPrev;

}
The special case where the passed in list is empty (NULL) is handled first; the reverse of a NULL list is just a NULL list. Otherwise, we need three pointers, which keep track of the current node (the one which needs its "next" field to be updated), the previous node (the one to which the current node should point), and the next one (to become the current after the current node gets its "next" field updated). We start with the current node being the first one and the previous node being NULL (since the first node becomes the last and points nowhere). For each iteration of the "do…while" loop, we update the "next" field of the current node and then update the pointers to point to the new nodes. When we reach the end of the list, we stop; at this point, "pPrev" (which stores the previous value of "pCur") points to what used to be the final node and is now the first, so we return it.

Here now is a recursive solution to the same problem:

PNODE reverse_list(PNODE pList)

{

PNODE pTemp;

if (pList == NULL)

return NULL;

if (pList->next == NULL)

return pList;

pTemp = reverse_list(pList->next);

pList->next->next = pList;

pList->next = NULL;

return pTemp;

}

We are basically saying the following: In order to reverse the entire list, reverse all of it other than the first node and then plug the first node on to the end. The function has two base cases; if the list is empty, it stays empty, and if the list is a single node, it remains the same. (These two base cases could be combined into one, returning "pList" if either condition is true.) Otherwise, we do the general case. We recursively call "reverse_list" passing it the list starting with the second node (considering the current node to be the first). Since we have not changed the "next" field of the current node, and it used to point to the first node of the remaining list, it will now point to the last node of the remaining list (which has already been reversed once the recursive call to "reverse_list" returns). We update that node (the one pointed to by the current node) to point to the current node, and we update the current node to point nowhere (its "next" field becomes NULL).

Normally, a linked list has a beginning and an end. You must never lose track of the beginning of the linked list or there is no way to find it, since links always point forwards. To avoid this problem, there are two common variations of linked lists, namely circular linked lists and double linked lists.

A circular linked list is similar to a regular linked list, but the last node points back to the first. Or, alternatively, you can think of it as there is no first node, just a circle of nodes. The nodes of a circular linked list have the same structure as nodes of a regular linked list; they contain data and one pointer that is a link to another node. However, in a circular linked list, no link is a NULL pointer.

One problem with a circular linked list is that in order to insert a node at the beginning of the list, you actually have to traverse the list to find the end of the list so that the last node can point to the new beginning node. This can get annoying, and circular linked lists do not seem to be used much in practice.

A double linked list is a list in which each node has two links. One link points to the next node and one points to the previous node. For example, the structure of a node in a double linked list whose data is just a single integer variable might be:

typedef struct node

{

int x;

struct node *back;

struct node *next;

} NODE;

typedef NODE *PNODE;

Now, inserting and deleting nodes from the list are more complicated than with regular lists because there are more pointers to update, but certain things are made simpler in that you never have to keep track of previous nodes since you can always take a step back! The only exception to this is if you step off the end of the list through a NULL link. Then you can not step back to the previous (final) node, as you can't dereference a NULL pointer.

Sometimes, you can combine the two variations together, in which case you are dealing with a circular, double linked list. The structure of each node is the same as for a double linked list, but there are no NULL links. The final node's "next" link points to the first node of the list, and the first node's "back" link points to the final node.

