CS102: Topic #1 - Introduction

A computer is a system that consists of hardware (physical equipment) that executes software (programs or instructions that control the hardware).

Hardware can be divided into 5 main components:

1) Input Devices – Allow programs and data to be entered into the computer. Examples: keyboard, mouse.

2) Central Processing Unit (CPU) – Responsible for executing instructions.

3) Primary Storage or Main Memory – Hardware that stores programs and data temporarily while processing. If you turn off your computer, whatever is currently in main memory is lost.

4) Auxiliary Storage – Used for permanent storage of programs and data. Is not affected when you turn off your computer. Examples: hard drive, disk.

5) Output Device – Where the output of a process is shown. Examples: monitor, printer.

Software can be broken down into two main categories:

1) System Software - provides a user interface and tools that allow the user to access and use efficiently different components of the computer. Examples: operating system, disk formatting programs, compilers.

2) Application Software - helps users to solve problems and accomplish tasks. Examples: word processors, spreadsheets.

In order to write a program, you must use a computer language.

Evolution of computer languages:

1940’s – Machine Languages

1950’s – Symbolic Languages

1960’s through present – High-Level Languages
Future – Natural Languages?

Machine languages are what computers "understand". Every program that you write will be translated to machine language before it is executed by a computer. A machine language program can be thought of as a stream of 0’s and 1’s. The reason for this is that the internal circuits of computers are made of switches, transistors, and other electronic devices that can be in one of two states: off or on. The off state can be represented by 0 and the on state can be represented by 1. Each 0 or 1 digit is referred to as a bit.

A bit is a single 0 or 1 in binary code.

A byte is a sequence of 8 bits. Each byte could also be represented as a decimal number from 0 to 255.

Not all computers share the same machine language. Each type of computer has its own. So each time a new chip comes out, it may have a new machine language. One of the problems with programming in machine language is that you would have to learn a new version of it for each type of chip. Some machine languages have constant length instructions but others have variable length instructions depending on the type of instruction. Some instructions also include data. For example, an instruction telling the computer to "add" two numbers together must also specify the numbers.

Before a computer can execute binary code, the code must be stored in main memory. The starting location of the binary code is stored in a computer register, which is similar to memory. A register is a location in which the computer can store information, and some registers have special purposes. There will be one that is just used for storing the current location within the code of an executing program. After the first instruction is located, the special register gets updated so that it points to the second instruction. Then that gets executed. Etc. Normally, instructions get executed in a sequentially. Sometimes, special instructions might change the special register used to keep track of the current location with the code of the executing program. Such instructions cause the flow of a program to jump from one location to another.

Clearly, another problem with programming in machine language is that it is totally confusing and unreadable. Nobody wants to memorize all these sequences of 0’s and 1’s. Nevertheless, the first computers required programming to be done in this manner. They were machines the size of rooms, thousands or millions of times slower than today’s desktops, and they didn’t use keyboards but switches or punch cards.

In the 1950’s, the first symbolic languages were created. The idea was to have each type of instruction represented by some intuitive code word, and to allow data to be represented as decimal numbers. Here is an excerpt from a symbolic language program:

pushal 3(r2)

calls #2,SCANF

mull3 –8(fp),-12(fp)

pushal 6(r2)

An assembler is a special program used to translate symbolic code into machine code.

Symbolic languages also became known as assembly languages.

In actuality, the program containing the segment above would be translated into machine code that would then be executed. But it might be simpler to think of it as the code that is actually getting executed. Think of the computer walking along these instructions executing each one.

Assembly languages are more intuitive and easier to program than machine languages. However, there is still approximately a one to one correspondence between assembly language instructions and machine language instructions, and there has to be a different assembly language for each type of computer. To avoid these problems, high-level languages were developed.

Three benefits of high-level languages:

1) More powerful instructions; each may translate to several machine language instructions.

2) Portable to many different computers.

3) Simpler to understand and use.

One of the first high-level languages was FORTRAN, created in 1957. Soon after FORTRAN was COBOL.

Today, one of the most commonly used high-level languages is C.

Here is an abbreviated, quick history of C:

1972 – Dennis Ritchie creates first version of C

1978 – The first edition of "The C Programming Language" by Kernighan and Ritchie is published.

1983-1988 – A committee of the American National Standards Institute (ANSI) establishes a modern, comprehensive definition of C.

1988 – The second edition of "The C Programming Language" by Kernighan and Ritchie is published.

As with any high level language, a C program must be converted to machine language before it can be executed. The act of translating your C source code to machine language is known as compiling. Here are some definitions:

source file – The file containing your C code.

compiler – The program which converts your source code to machine language.

A C program consists of variables and functions. A function consists of a list of statements. Some statements are single instructions that are part of the C language itself. Other statements are calls to functions, either functions that you write yourself or functions that are provided with the C language. ANSI C (The version of C that was approved by the American National Standards Institute) includes several libraries of functions that are provided to programmers that provide important functionality and simplify programming. When you want to call such provided functions, you must tell the compiler which libraries you are going to use, and some program must attach these libraries to your executable.

linker – a program which combines libraries and the machine code generated from a program into a single executable.

Compilers and linkers can be separate programs, but in most cases, they will be coupled together into a single program that performs both functions.

It has become quite standard, for some reason, that the first program that is often taught in any high level programming language is a program which prints the words "Hello World!" on the screen on a line by itself. This is what the program might look like in C:

#include <stdio.h>

int main(void)

{

printf("Hello World!\n");

return 0;

}

Technically speaking, the word "int", the word "void", and the instruction "return 0;" are optional in this program. The program would still work as follows:

#include <stdio.h>

main()

{

printf("Hello World!\n");

}

You're not yet in a position to understand why the optional segments are included. For now, it is a good idea of getting into the habit of including the extra "int", "void", and "return 0;" in all your main functions. The "return 0;" statement is just returning control from the program to the operating system with the message that no error has occurred.

Every C program includes a function named "main". This is where the execution of a program begins. Every function (including "main") in every program begins with a left brace and ends with a right brace, and in between these braces are zero or more statements. The statements of main are executed one at a time until the program is finished. Some statements are actually calls to other functions. These functions may be written by the programmer or provided in a library. In this program, "printf" is a function provided in a library. The first line of the program, "#include <stdio.h>", is in a sense, indicating that the program will use one or more functions in the standard input/output library, and "printf" is one of these functions. When a function is called, execution of the program jumps to that function. When the called function is finished, execution continues in the calling function at the point directly after the call to the called function. It is too early to really understand how "printf" is working, but for now, just consider it a way to print strings to the screen. (A string is a sequence of characters.) In actuality, the characters are printed one at a time.

Two other things to notice: Statements in C are separated by semicolons. Notice, for example, the semicolon at the end of the "printf" line. It’s necessary. If it isn’t there, the program won’t compile correctly. Forgetting semicolons will be one of the most common errors that you make. Fortunately, compilers are good at detecting them and warning you about them, so they’re usually easy to catch.

The other thing to notice is the "\n" at the end of the string "Hello World". This is interpreted as a single special character, the end-of-line character. It causes the print routine to output to the monitor (or whatever the standard output of the computer is) an end-of-line character. It’s like pressing Enter while using a word processor. The next piece of output will start on the next line.

C is pretty flexible when it comes to whitespace. Whitespace includes spaces, tabs, newline characters that you can not see. C ignores most whitespace characters that are not part of strings which leaves a programmer some choice of style. When it comes to decisions such as how to indent code and where to place braces, try to be consistent so that your code is readable to others.

Before you can run a C program you must compile the program, and before you can compile the program you must store the source code for that program in a source file. You can create such a source file using a provided text editor. Some popular text editors generally provided when you are using a Unix system are emacs, pico, and vi. I like emacs the best, but vi seems to be the most popular at Cooper Union and pico is the simplest.
Typically, the name of a file containing source code for a C program will end with the extension ".c", and you should be in the habit of always naming your source files this way. For example, a sensible name for the program above would be "hello.c". So, you might run your text editor by typing the following at a Unix prompt:

pico hello.c

This will run the text editor "pico" and the file created will be called "hello.c". After typing in the code for the file, you must use the editor to "save" the file. Once you have saved the file, you are ready to compile the code.

Let's say we’ve created the file "hello.c" and we are ready to compile it. There are two compilers that will be available for use on most Unix systems. They are "gcc" and "cc". To use gcc, assuming you are in the same directory as the program hello.c, type:

cc hello.c

If you want to use cc instead, you would type:

cc hello.c

Either command has the same affect. The two compilers differ when your program has errors; they print different error messages and warnings. You should feel free to use either compiler you wish. Eventually, you will probably get to like one more than the other, but it’s really just a matter of preference.

Either compiler will create an executable that you can run. If you don’t provide a name, the name for the executable defaults to "a.out". So, if you list the contents of the directory after running one of these commands, the file a.out will be there. You can execute it by typing "a.out" at the command prompt, and, assuming you haven’t made any mistakes, the words "Hello World!" will be printed on one line! The new command prompt will be on the line below.

What happens if you forgot the "\n" at the end of the string? You will still see the words "Hello World!" on the screen, but the new command prompt will be directly after the exclamation mark, and it won’t look good.

You don’t have to use the default name of "a.out" for your executable; you can specify the name of the executable yourself. For instance, let’s say you want the name of the executable to be "hello" with no extension. You compile as follows:

gcc –o hello hello.c

or

cc –o hello hello.c

And then you can run the executable by typing "hello" at the command prompt.

Let’s say you want "Hello World!" to be printed to the screen three times instead of one, with each instance on a separate line. With C, there are often multiple ways to solve the same problem. Here are two possible solutions for this problem.

Solution 1:

#include <stdio.h>

int main(void)

{

printf("Hello World!\n");

printf("Hello World!\n");

printf("Hello World!\n");

return 0;

}

Solution 2:

#include <stdio.h>

int main(void)

{

printf("Hello World!\nHello World!\nHello World!\n");

return 0;

}

With the first solution, the computer will step through the instructions one at a time, and each call to "printf" will cause the string "Hello World!" to be printed out on its own line. With the second solution, there is just one call to "printf", and the string includes the text "Hello World!" three times and also three end-of-line characters.

Here is the general format of a C program:

Preprocessor Directives

Global Declarations

int main (void)

{

Local Declarations

Statements

}

Optionally other functions with similar structure to "main"

Now take another look at the "Hello World!" program:

#include <stdio.h>

int main(void)

{

printf("Hello World!\n");

return 0;

}

Our "Hello World!" program has just one preprocessor directive, the "#include <stdio.h>" line. This line is telling the compiler that we are using one or more routines from the standard input/output library and that the library should be linked with our executable. In this case, we need this library so that we can use the "printf" command. The reason this is called a "preprocessor directive" is that things like this are handled by the compiler before it converts the rest of the code to machine code.

The program has no global or local declarations. The meaning of "declaration" will be made clear when variables are covered.

The program has two statements. One is the call to the function "printf" and the other is the "return" statement that ends the program.

This program does not have any functions other then "main".

One optional addition to the components of a C program not listed in the structure of a general C program above is that of comments. Comments can appear almost anywhere in a C program, and they are an example if internal program documentation. Comments are a description by the programmer to make the code easier to read for other people, or they might be reminders for the programmer at a later time.

Many programs will have a comment at the start of the program telling what the program does, a comment at the top of each function telling what the function does, and comments within the code to describe anything that isn't obvious.

A comment starts with the symbols "/*" and ends with the symbols "*/". These symbols tell the compiler that all text in between is a comment and should be ignored.

A comment can take up one line, part of a line, or multiple lines.

token – one or more symbols understood by the compiler that help it interpret your code.

The symbols used to start and end comments are examples of tokens.

Now we will rewrite the "Hello World!" program with comments:

/*

* The following program prints the phrase "Hello World!" to the screen

* on its own line.

* Written by: NAME

*/

#include <stdio.h>

/* Global declarations would go here. */

int main(void)

{

/* Local declarations would go here. */

printf("Hello World!\n"); /* This function call prints the string. */

return 0; /* Returns the value of 0 to the operating system. */

}
Normally such a simple program wouldn’t require all these comments, just maybe the one at the very top. The rest are here for examples. Notice the first comment takes up multiple lines. The asterisks in the middle or just for style, they are not required. There are also two examples of comments that take up there own line and two examples that take up part of a line.

