CS102: Fall 2003
FINAL EXAM A
SOLUTIONS
Question #1: (10 points)

We have seen implementations of bubble sort, selection sort, and insertion sort that rely on nested loops. The outer loop is responsible for applying some basic idea to an array of integers until the array is sorted. Assume we are dealing with the following array:

{50, 90, 15, 127, 30, 81}

What will the array look like after each of the first two iterations of the outer loop for each of the three sorts mentioned above?

Bubble sort:

Pass #1: {50, 15, 90, 30, 81, 127}

Pass #2: {15, 50, 30, 81, 90, 127}

Selection sort:

Pass #1: {15, 90, 50, 127, 30, 81}
Pass #2: {15, 30, 50, 127, 90, 81}

Insertion sort:

Pass #1: {50, 90, 15, 127, 30, 81}

Pass #2: {15, 50, 90, 127, 30, 81}

Question #2: (10 points)

Consider the following structure:

typedef struct student {

char name[100];

int homework[5];

int final;

} STUDENT;

The fields of this structure represent the name of a student (assumed to contain less than 100 characters), the scores on five homework assignments, and the score on a final exam.
Now consider the following declaration of a variable of this type:

STUDENT student1;

(a) Write a single line of code that sets the name of student1 to "Jane Doe".

strcpy(student1.name, "Jane Doe");
(b) Write a single line of code that sets the score for the student's final exam to 80.
student1.final = 80;

(c) Write a single line of code that sets the score for the student's fourth homework assignment to 85.
student1.homework[3] = 85;
Question #3: (15 points)

You want to write a program that will read 10 integers from the user and then display the sum and the average of the 10 integers. You write the following code:

#include <stdio.h>

int main(void)

{

int y;

int sum;

float ave;

for (x = 1; x < 10; x++)

{

scanf("%d", y);

sum = sum + y;

}

ave = sum / 10.0;

printf("Sum = %d\n", sum)

printf("Average = %.1d\n", ave);

return 0;

}

The above code has five errors in it! What are they?

(1) The variable x is not declared

(2) The '&' is missing in the scanf statement

(3) The for loop only iterates 9 times

(4) The first printf statement is missing a semicolon

(5) The "%.1d" in the second printf statement should be "%.1f"

Question #4: (15 points)

You compile and run the following program:

#include <stdio.h>

int x = 20;

int y = 30;

int main(void)

{

int z = 40;

int *p1 = &x;

int *p2 = &z;

*p1 = *p2;

printf("%d %d %d\n", x, y, z);

*p2 = func(p1, p2);

printf("%d %d %d\n", x, y, z);

return 0;

}

int func(int *p1, int *p2)

{

int z = 50;

p2 = &y;

*p2 = *p2 + 1;

x = z - 15;

printf("%d %d %d\n", x, y, z);

return 100;

}

What gets displayed to standard output?

40 30 40

35 31 50

35 31 100
Question #5: (25 points)

The following are the definitions concerning nodes in a linked list:

typedef struct node

{

int x;

struct node *next;

} NODE;

typedef NODE *PNODE;

Write a function called "concatenate_lists" which accepts two parameter pList1 and pList2 each of which points to the first node in a linked list (two separate linked lists). The function should append the second list to the end of the first list (i.e. the last node of the first list should point to the first node of the second list), but it is only passed a pointer to the start of each list. The function should return a pointer to the first node in the list (after the two lists have been concatenated). If the first list passed to the function is NULL, the function should just return pList2 (since this now becomes the new list).

PNODE concatenate_lists(PNODE pList1, PNODE pList2)

{

 PNODE pTmp;

 /* If first list is empty, return pList2 */

 if (pList1 == NULL)

 return pList2;

 /* Find the last node */

 pTmp = pList1;

 while(pTmp->next != NULL)

 pTmp = pTmp->next;

 /* Append second list to end of the first */

 pTmp->next = pList2;

 /* Return pointer to first node */

 return pList1;

}
Question #6: (25 points)

Write a program that accepts a string as input from the user (assumed to contain less than 25 characters). The program should then display to standard output a grid with N rows and 2 * N - 1 columns, where N is the length of the string (not including the null character). The string should appear twice – diagonally from the top left to the bottom middle and diagonally from the top right to the bottom middle. (Therefore every character in the string should appear twice in the grid, except for the final character which appears only once at the bottom middle.) The rest of the grid should be blank (i.e. consist of spaces).

Here is a sample run, assuming the user types “Hello World!” when prompted:

Enter a string: Hello World!

H H

 e e

 l l

 l l

 o o

 W W

 o o

 r r

 l l

 d d

 !

#include <stdio.h>

#include <string.h>

int main(void)

{

 int row, col, length;

 char str[25];

 printf("Enter a string: ");

 gets(str);

 length = strlen(str);

 for (row = 0; row < length; row++)

 {

 for (col = 0; col < 2 * length - 1; col++)

 {

 if ((col == row) ||

 (col == 2 * length - 2 - row))

 putchar(str[row]);

 else

 putchar(' ');

 }

 putchar('\n');

 }

 return 0;

}
