EE456: Compiling Techniques

Fall 2003

Homework #4
(1) In class, we looked at an S-attributed definition to implement a very simple desk calculator (a slight variation of the one provided in the textbook as Figure 5.16):

	Production
	Code Fragment

	(1) L (E \n
	val[ntop] := val[top-1]

	(2) E (E1 + t
	val[ntop] := val[top-2] + val[top]

	(3) E (T
	

	(4) T (T1 * F
	val[ntop] := val[top-2] * val[top]

	(5) T (F
	

	(6) F ((E)
	val[ntop] := val[top-1]

	(7) F (digit
	

We went over an example showing how this S-attributed definition could be used to implement a bottom-up evaluation of the input string "3 * 5 + 4 \n" (and this is also provided in the book as Figure 5.17). Using the same four columns (showing the remaining input, the states on the stack, the values on the stack, and the productions used), show the sequence of moves that result while parsing the input "(8 + 2) * 4 \n"
(2) Consider an L-attributed definition with the following production and rule (among others, of course):
	Production
	Semantic Rules

	C (A B1 B2 B3
	B1.i := A.s; B2.i = A.s; B3.i = A.s

In other words, C can have the form of any string that is the concatenation of A followed

by the concatenation of three strings all of which match B, and all three instances of B are inheriting a synthesized attribute of A. This can present a problem when parsing the strings that compose each B, because the parser will not know where on the stack to find the inherited attribute of A. Explain how this problem can be solved using markers and copy rules (show all new productions and rules that you will add or change, and briefly explain why this solves the problem).
 (3) Consider the following Pascal function header:

function f(a : array[5..10] of real; b, c : integer) : real;
(a) Assume that the start of the activation record for a function consists of storage space for the return value followed by storage space for each of the parameters in the order that they appear listed in the function header. Assume further that the symbol table entry for each parameter includes a width (the number of bytes required for storage of the parameter) and an offset (the relative number of bytes from the start of the current activation record that the storage for the parameter begins). Finally, assume that integer values require 4 bytes and real values require 8 bytes. Given all of these assumptions, list the width and offset associated with each parameter of function f.
(b) List the type expression denoting the type of function f.

(4) Consider the following segment of code:
if x + 5 > y and x < z then

 a = y * 10
else

 a = x

(a) Assuming that numerical representation is being used for booleans, show three-address code to implement this segment. (Use the value 1 to denote true and the value 0 to denote false. Use statement numbers starting at 100. Assume that all variables are declared integers.)
(b) Now assuming that the flow-control method is being used for booleans, show three-address code to implement this segment. (Use statement numbers starting at 100. Assume that all variables are declared integers.)

(5) Consider the following C program:
#include <stdio.h>

int Fibonacci(int);

int main(void) {

 printf("%d\n", Fibonacci(6));
 return 0;
}

int Fibonacci(int x) {
 if (x <= 2)

 return 1;

 else

 return Fibonacci(x-1) + Fibonacci(x – 2);

}
The Fibonacci sequence is a well-known mathematical sequence of numbers defined such that the first two numbers in the sequence are 1 and every further number is the sum of the previous two. The function Fibonacci above computes the xth Fibonacci number.
(a) Show the activation tree that results from running this program.

(b) Why is this a bad way to compute a Fibonacci number?
