EE456: Compiling Techniques

Fall 2003

Homework #3
(1) From the textbook, exercise 4.1:
Consider the grammar:
S (aSbS | bSaS | ε

(a) Show that this grammar is ambiguous by constructing two different leftmost derivations for the sentence abab.

(b) Construct the corresponding rightmost derivations for abab.

(c) Construct the corresponding parse trees for abab.

(d) What language does the grammar generate?

(2) Consider the following grammar:

A (Ax | Ay | Bx | By | z

B (Az | Bx | y

Use the general algorithm discussed in class to eliminate left recursion from this grammar.

 (3) Consider the following grammar:

E (TE’
E’ (+TE’ | ε
T (FT’
T’ (*FT’ | ε
F ((E) | id
In class, we examined a predictive parsing table used to implement top-down parses of input strings according to this grammar (it is also provided in the textbook in Figure 4.15).

Using that table, show how to parse the string: (id + id) * id
For each step, show what is on the stack, what is left in the input buffer, and what grammar rule is produced as output.

(4) Consider the following grammar for Boolean expressions (taken from Exercise 4.3 of the textbook):

bexpr (bexpr or bterm | bterm
bterm (bterm and bfactor | bfactor
bfactor (not bfactor | (bexpr) | true | false

(a) Eliminate left recursion from the grammar.
(b) Computer FIRST and FOLLOW for all nonterminals of the resulting grammar.
(c) Using the rules discussed in class, construct a predictive parsing table for the grammar.

(5) Regarding the operators of the grammar specified in (4), assume that not (a unary operator) has the highest precedence, followed by and (which is left associative), and then or (which is left associative). Construct a table indicating the operator-precedence relations for the grammar. Both true and false should be treated the same as id from the example covered in class.
(6) Consider the following grammar (with productions numbered 1 through 6):

(1) E (E + T
(2) E (T
(3) T (T * F
(4) T (F
(5) F ((E)

(6) F (id
In class, we examined an LR parsing table used to implement bottom-up parses of input strings according to this grammar (it is also provided in the textbook in Figure 4.31).

Using that table, show how to parse the string: (id + id) * id
For each step, show what is on the stack, what is left in the input buffer, and what action is taken.
