EE456: Compiling Techniques

Fall 2003

Homework #1

(1) Consider the CFG consisting of the following single production:

S (S (S) S | ε

(a) Describe, in words, what language this CFG recognizes.

(b) Show that this CFG is ambiguous by demonstrating a single string that can be derived from the CFG and giving two parse trees for the string.

(c) Write a non-ambiguous CFG that recognizes the same language.

(2) Construct a CFG for expressions consisting of positive integers (not just single digits) separated by plus signs, minus signs, multiplication signs, division signs, and parentheses. (Do not include div or mod). Keep in mind that the parentheses have the highest precedence, followed by multiplication or division, and then addition or subtraction (i.e. separate expressions, terms, and factors).

(3) Construct a syntax-directed definition (i.e. associating semantic rules with each production) for the CFG you created for the previous question. Associated with each nonterminal should be an attribute v, representing the value of the expression so far.

(4) From textbook, Exercise 2.5, I am changing it slightly:

(a) Show that all binary strings generated by the following grammar have values divisible by 3. (The book gives a hint, but I personally did not find it to helpful!)

num (11 | 1001 | num 0 | num num

(b) Does the grammar generate all binary strings with values divisible by 3? If your answer is yes, explain your reasoning. If your answer is no, give an example that can not be generated.

(5) Similar to Exercise 2.7 from textbook, I am changing it:

(a) Construct a syntax-directed definition that translates expressions consisting of single digits separated by plus signs and minus signs from infix notation to prefix notation. Figure 2.5 shows a similar example for infix to postfix, and we also went over that example in class.

(b) Give an annotated parse trees for the input 9-5+2.

(6) Construct a translation scheme (i.e. embed semantic actions into the productions of the CFG) that is not left-recursive which implements the same conversion as the previous question. Equation (2.14) shows a similar example for infix to postfix, and we also went over that example in class.

(7) From textbook, Exercise 2.16, parts (a) and (b) only, slightly changed:

Consider the following grammar fragment:

stmt (if expr then stmt
 | if expr then stmt else stmt
 | other
where other stands for other statements in the language.

(a) Show that the grammar is ambiguous.

(b) Construct an equivalent unambiguous grammar fragment that associates each else with the closest previous unmatched then. (Hint: There can be no if statement without an else in between a then and a matching else. Construct a grammar that uses one production to recognize “matched” statements, including if statements for which every then has an associated else, as well as other statements. Another production should recognize “unmatched” statements, including if statements with a matched statement after the then and no additional else clause, as well as if statements with an unmatched statement after the else. Finally, a statement can be any matched statement or unmatched statement.)
