CS102: Topic #15 - Sorting

Sorting is a very common procedure in many programs that require data to be organized to allow for quick search and retrieval.  There are many common algorithms for sorting.  Here we will cover three simple sorting techniques and one more advanced sort involving recursion.  After discussing these sorts, we will cover the related topic of searching.

Sorting usually involves comparisons between numbers or strings.  We will start by examining how to sort integers stored in arrays, but the principles involved apply to sorting any values that could be ordered.

All three of the simple sorting algorithms rely on the concept of swapping two elements of the list to be sorted.  The concept of swapping was discussed as part of a previous topic.  Swapping refers to the act of exchanging the values of two variables.  For example, to exchange the values of two integer variables "x" and "y", you could use the following code:

temp = x;

x = y;

y = temp;

Here, "temp" is assumed to be a third integer variable.

A function can be written to swap the values of two integer variables using pointers as follows:

void swap(int *x, int *y)

{


int temp;


temp = *x;


*x = *y;


*y = temp;


return;

}

The sorts described below will assume the existence of this routine.

The first sort described here is called bubble sort.  The basic idea is to repeatedly loop through the array, comparing adjacent elements and exchanging them if they are out of order.  If a single iteration of the loop finds that no elements need to be swapped, then the list is already in sorted order and the sort should stop.

Here is an implementation of bubble sort that takes as parameters an array of integers and the number of integers in the array, and then proceeds to sort the integers in increasing order:

void bubbleSort(int list[], int numElements)

{


int index;


int sorted;
/* Boolean which is true if list is in sorted order. */


do

{



sorted = 1;
/* Start off assuming that list is sorted. */


for (index = 0; index < numElements - 1; index++)


{



if (list[index] > list[index + 1])




{





swap(&list[index], &list[index+1]);





sorted = 0;
/* List was not sorted. */




}


}

} while (!sorted);


return;

}
Let's say this function is passed the following array:

{125, 52, 34, 80, 200, 12, 29, 102, 53, 89}

Each iteration of the outer loop corresponds to one pass through the array (i.e. we walk through the array one time exchanging elements that were out of order).  Here's what the array looks like after each pass:

After 1 pass:

{52, 34, 80, 125, 12, 29, 102, 53, 89, 200}

After 2 passes:

{34, 52, 80, 12, 29, 102, 53, 89, 125, 200}

After 3 passes:

{34, 52, 12, 29, 80, 53, 89, 102, 125, 200}

After 4 passes:

{34, 12, 29, 52, 53, 80, 89, 102, 125, 200}

After 5 passes:

{12, 29, 34, 52, 53, 80, 89, 102, 125, 200}

After 6 passes:

{12, 29, 34, 52, 53, 80, 89, 102, 125, 200}

After five passes, the array was sorted.  A sixth pass was necessary for bubble sort to realize that the array was sorted, and after the sixth pass, the outer loop of the function ends, and the function returns.

Note that in the function, we have "index" loop from 0 to "numElements - 2", so the loop goes to the second to last element.  This is because we are comparing each element to the one after it.

The variable "sorted" is used as a boolean.  Before each pass through the array, we set it to one (TRUE), thus initially assuming that the array is sorted.  If, at any point, we find the array is unsorted, we set the boolean to zero.  If we loop through the entire array and everything is in order, the outer loop ends and the function returns.

After the first iteration of the outer loop, the final element will be guaranteed to be in the correct position of the array.  It is larger than all other elements, so it will get swapped every time it is compared to another element.  After the second iteration of the outer loop, the final two elements will be in the correct positions of the array.  This continues, and it will take at most n-1 iterations (where n is the size of the array) to have all the elements of the array sorted.  After the entire array is sorted, the outer loop will require one additional iteration to realize that the loop is sorted.

In the worst case, up to n iterations of the outer loop are required, and each iteration walks through the array of size n, so the running time of this sort, in the worst case, is proportional to n^2 (i.e. it is an O(n^2) time algorithm).

The next sort described here is called selection sort.  The basic idea is to find the smallest element in the array and move it to the beginning (first slot) of the array, then find the second smallest and move it to the second slot in the array, etc. until the entire array is sorted.

Here is an implementation of selection sort that takes as parameters an array of integers and the number of integers in the array, and proceeds to sort the integers in increasing order:

void selectionSort(int list[], int numElements)

{


int index1, index2, indexSmallest;


for (index1 = 0; index1 < numElements - 1; index1++)


{



indexSmallest = index1;



for (index2 = index1; index2 < numElements; index2++)




if (list[index2] < list[indexSmallest])





indexSmallest = index2;



if (indexSmallest != index1)




swap(&list[index1], &list[indexSmallest]);


}


return;

}
Now, the outer loop loops from the first element up through the second to last element, and the inner loop loops from the current element up through the end of the array.  At the start of each iteration of the outer loop, we assume that the current element is the smallest of the elements remaining in the unsorted portion of the array, but whenever we find one smaller than the smallest found so far, we record its index.  At the end of each iteration of the outer loop, we exchange the smallest element in the remaining portion of the array with the element that was incorrectly taking up its slot.  (The "if" statement before the call to "swap" isn't really necessary; it is OK but useless to swap an element with itself.)

Let's say this routine is passed the same array as before:

{125, 52, 34, 80, 200, 12, 29, 102, 53, 89}

Here's what the array looks like after each iteration of the outer loop:

After 1 iteration:

{12, 52, 34, 80, 200, 125, 29, 102, 53, 89}

After 2 iterations:

{12, 29, 34, 80, 200, 125, 52, 102, 53, 89}

After 3 iterations:

{12, 29, 34, 80, 200, 125, 52, 102, 53, 89}

After 4 iterations:

{12, 29, 34, 52, 200, 125, 80, 102, 53, 89}

After 5 iterations:

{12, 29, 34, 52, 53, 125, 80, 102, 200, 89}

After 6 iterations:

{12, 29, 34, 52, 53, 80, 125, 102, 200, 89}

After 7 iterations:

{12, 29, 34, 52, 53, 80, 89, 102, 200, 125}

After 8 iterations:

{12, 29, 34, 52, 53, 80, 89, 102, 200, 125}

After 9 iterations:

{12, 29, 34, 52, 53, 80, 89, 102, 125, 200}

Like bubble sort, selection sort is an O(n^2) time algorithm, due to the nested loops.  Unlike bubble sort, the outer loop always loops n-1 times for a list of size n, and therefore is no quicker even if the original array was already sorted.

The next sort described here is called insertion sort.  The idea is to take one element at a time and stick in the correct place in the part of the array that's already been sorted.

Here is an implementation of insertion sort that takes as parameters an array of integers and the number of integers in the array, and proceeds to sort the integers in increasing order:

void insertionSort(int list[], int numElements)

{


int index1, index2, curElement;


for (index1 = 1; index1 < numElements; index1++)


{



curElement = list[index1];



for (index2 = index1;

(index2 > 0) && (list[index2 - 1] > curElement);

index2--)



{




list[index2] = list[index2 - 1];



}



list[index2] = curElement;


}


return;

}
Now, the outer loop loops through the elements starting at the second element, since the first element by itself can be thought of as a sorted list of length 1.  For each element, we find its position in the sorted portion of the array (the part of the array to the left of the current element), shifting all elements greater than the current element one slot to the right and then filling in the gap left in the correct position with the current element.

Let's say this routine is passed the same array as before:

{125, 52, 34, 80, 200, 12, 29, 102, 53, 89}

Here's what the array looks like after each iteration of the outer loop:

After 1 iteration:

{52, 125, 34, 80, 200, 12, 29, 102, 53, 89}

After 2 iterations:

{34, 52, 125, 80, 200, 12, 29, 102, 53, 89}

After 3 iterations:

{34, 52, 80, 125, 200, 12, 29, 102, 53, 89}

After 4 iterations:

{34, 52, 80, 125, 200, 12, 29, 102, 53, 89}

After 5 iterations:

{12, 34, 52, 80, 125, 200, 29, 102, 53, 89}

After 6 iterations:

{12, 29, 34, 52, 80, 125, 200, 102, 53, 89}

After 7 iterations:

{12, 29, 34, 52, 80, 102, 125, 200, 53, 89}

After 8 iterations:

{12, 29, 34, 52, 53, 80, 102, 125, 200, 89}

After 9 iterations:

{12, 29, 34, 52, 53, 80, 89, 102, 125, 200}

Like selection sort, the nested loop structure of this sort makes insertion sort an O(n^2) time algorithm in the worst case, and there are n-1 iterations of the outer loop every time.  However, if the list is in nearly sorted order to begin with, the inner loop will end quickly most of the time, and the sort will be fast.

We're now going to look at a more complex, recursive sort called merge sort.  The idea is that a list can be sorted by sorting the left half of the list, then sorting the right half of the list, and then merging the two halves of the list together.

Merging two sorted lists into one sorted list can be done in linear time.  (In other words, if the two sorted lists have a total of n elements, merging the two lists into one sorted list can be done with an O(n) time algorithm.)  The merge routine is actually a bit complex.  Below is one possible implementation.  This function is passed an array of integers and three indexes such that the portion of the array from "indexFirst" through "indexMiddle" is already sorted and the portion of the array from "indexMiddle+1" through "indexLast" is already sorted.  In linear time, this function creates a sorted list containing all of the elements from "indexFirst" through "indexLast" and then copies this sorted list back to the correct portion of the original array.  The routine uses two pointers to walk along the two separate sorted portions of the array; whichever pointer points to a smaller element has that element copied to the new array and then that pointer is incremented.  If one pointer walks past the end of its sorted section of the array, the remaining part of the other sorted section of the array is copied (this is handled by the "if" statement's condition).  Here is the merge routine:

void merge(int list[], int indexFirst, int indexMiddle, int indexLast)

{


int *p1, *p2;


int *pCopy;


int count = 0;


pCopy = (int *) malloc(sizeof(int) * (indexLast - indexFirst + 1));


p1 = &list[indexFirst];


p2 = &list[indexMiddle + 1];


while (count < indexLast - indexFirst + 1)


{

if ((p1 <= &list[indexMiddle])

&& ((p2 > &list[indexLast]) || (*p1 < *p2)))



{




pCopy[count] = *p1;




p1++;



}



else



{




pCopy[count] = *p2;




p2++;



}



count++;


}


for (count = 0; count < indexLast - indexFirst + 1; count++)



list[indexFirst+count] = pCopy[count];


free(pCopy);

}

Here is an implementation of merge sort which takes as parameters an array of integers, the index of the first element of the range to be sorted, and the index of the last element of the range to be sorted.  The function assumes a version of "merge" like the one above exists, and it uses recursion to sort the appropriate integers in increasing order:

void mergeSort(int list[], int indexFirst, int indexLast)

{


int indexMiddle;


/* If we are only dealing with one element, we don't need to sort it. */


if (indexFirst == indexLast)



return;


indexMiddle = (indexFirst + indexLast) / 2;


mergeSort(list, indexFirst, indexMiddle); /* Sort left half. */


mergeSort(list, indexMiddle + 1, indexLast); /* Sort right half. */


merge(list, indexFirst, indexMiddle, indexLast); /* Merge sorted halves. */


return;

}

Assume you want to use this routine to sort the integers of an array of "size" integers (numbered 0 through "size - 1") named "numbers".  You could use the following call:

mergeSort(numbers, 0, size - 1);

Although this sort is more complex than the previous three, it is more efficient.  Let's say we want to compute how long merge sort will require to sort an array of length n.  This should equal the amount of time necessary to sort two lists of size n/2 plus the time necessary to merge the two sorted halves together.  Merging the two halves can be done in linear time, so if T(n) is the time necessary to sort the entire array we have:

T(n) = 2*T(n/2) + O(n)

Solving an equation like this involves math beyond the scope of this course, but it turns out that it can be solved using a theorem known as "the master theorem" which is commonly used in complexity theory, and the solution is:

T(n) = O(n * log n)

For large values of n, this is significantly quicker than the n^2 sorts we have described previously!

Although we're not going to discuss it here, another very popular, recursive O(n * log n) time sort is called quicksort.
It has been proven that for comparison based sorts (i.e. sorts in which you are sorting elements by comparing their values to each other), this is the best you can do complexity wise.  However, there are certain cases in which you can do better if you know ahead of time that all values will fall into a specific range.  For example, let's say you want to sort an array of test scores, and you know that each score will be an integer in the range of 0 to 100.  You can use the following routine, which is passed an array of scores and the size of the array:

/* Use bin sort to sort scores. */

void sortScores(int list[], int numElements)

{


int x, y;


int counts[101];


int index;


/* Initialize counts */


for (x = 0; x <= 100; x++)



counts[x] = 0;


/* Count elements */


for (x = 0; x < numElements; x++)



counts[list[x]]++;


/* Write values in sorted over into array */


index = 0;


for (x = 0; x <= 100; x++)



for (y = 0; y < counts[x]; y++)




list[index++] = x;


return;




}
This type of sort is sometimes referred to as counting sort or bin sort.  Each slot of the array "counts" above represents a bin that counts how often a specific value occurs.  The nested loop at the end of the routine loops through all the bins, and for each bin, it loops through the number of times the associated value occurs and writes the value that many times back into the original array.  Although we are dealing with a nested loop, the sum of all the counts will still be the number of elements in the original array, and this is an O(n), linear time, sort.

Another concept related to sorting in searching.  Often, you have to write code to search a list for a particular element or an element satisfying certain properties.  When we are dealing with structures and other more complex data structures not yet discussed, the importance of search will probably become clearer.  For now, we will examine how to search arrays of integers for a particular integer.  As with sorting, the principles involved can be applied to other types of search as well.

First, let's say we are dealing with an unsorted array, like the one used in the previous sorting examples:

{125, 52, 34, 80, 200, 12, 29, 102, 53, 89}

Let's say you want to search this array for a particular integer.  Since there is no order to this array, you simply have to check each element, one at a time, until the integer is found or until all elements of the array have been checked.  The standard method is to use a sequential search, with loops through the array from start to finish, returning the index of the element if it is found or -1 (or some other predefined constant) if it is not found.  Here is an implementation that takes as parameters an array of integers, the size of the array, and the integer to search for.  If it finds the integer, it returns its index; otherwise, it returns -1.

int sequentialSearch(int list[], int numElements, int find_me)

{


int index;


for (index = 0; index < numElements; index++)



if (list[index] == find_me)




return index;


return -1;

}
This routine is clearly a linear time routine (i.e. one that takes O(n) time to search a list of size n).  For elements that are in the list, it takes an average of n/2 comparisons to find the element, and for elements that are not in the list, it takes n comparisons every time.

Now let's say we have already sorted the list:

{12, 29, 34, 52, 53, 80, 89, 102, 125, 200}

We can now perform search quicker using a method known as binary search.  The basic idea behind binary search is to start by looking at the middle element of the list.  If it is the one we are looking for, we are done.  If it is less than the element we are looking for, we know the element can only occur to the right.  If it is greater than the element we are looking for, we know the element can only occur to the left.  After each comparison, we cut the portion of the list that we are considering in half and repeat the above steps using the new, shorter list.

Here is an implementation which takes as parameters an array of integers, the size of the array, and the integer to search for.  If it finds the integer, it returns its index; otherwise, it returns -1.

int binarySearch(int list[], int numElements, int find_me)

{


int left = 0, right = numElements - 1;


int middle;


do


{



middle = (left + right) / 2;



if (list[middle] == find_me)





return middle;



else if (list[middle] < find_me)




left = middle + 1;



else




right = middle - 1;


} while (right >= left);


return -1;

}

We start looking at the entire range of the array (from element 0 to element n-1 if the array has n elements).  For each iteration of the "do…while" loop, a comparison is made and the range of the array we are considering is cut in half.  Eventually, if the element is not found, the range will contain only a single element.  After the next iteration, if this is not the element we are looking for, either "left" will be increased or "right" will be decreased and the condition the loop checks will no longer be true.  At most log n iterations of the "do…while" loop are executed, making a binary search significantly more efficient than a sequential search for large lists.

If you are writing an application that is dealing with a large list of data, and you know that searches through this data will be common, it probably pays to sort the data once so that all future searches can be executed faster.

