CS102: Programming Assignment #4
Due Wednesday night, November 19, by midnight!

You are going to write a program that reads a picture drawn with ASCII characters from a file called “picture.txt” and allows the user to fill a region of the picture with the character of his or her choice. The file is guaranteed to contain exactly 20 rows and 40 columns. Every row will contain only spaces and visible characters that can be typed on the keyboard. Every row is followed by a newline character. The boundary of the picture will consist of all asterisks. A valid “picture.txt” file might be:

**

* *

* *

* /\ *

* / \ *

* / \ *

* / \ *

* / \ *

* / \ *

* -------------- *

* | _ _ | *

* | |_| |_| | *

* | | *

* | __ | *

* | | | | *

* | | | | *

* -------------- *

* / / *

* / / *

**
The program should first read the picture from the file “picture.txt”, exiting if that file does not exist or if it can not be opened. If the file does exist, you can assume it will adhere to the appropriate format as described above. The program should display the original picture, and then ask the user for the row and column number of a square within the region to be filled. Rows are labeled 0 through 19 from top to bottom, and columns are labeled 0 through 39 from left to right. If the user types a row or column outside of these ranges, the program should warn the user and end. (You can assume, however, that the user will type integers separated by whitespace.) If the row and column are appropriate, the program should prompt the user for a character with which to fill the appropriate region. You should check that the character is not a space, and otherwise assume that the first character read after this prompt will be appropriate.

Here is a sample run of the program (assuming “picture.txt” contains the picture above):

Starting picture:

**

* *

* *

* /\ *

* / \ *

* / \ *

* / \ *

* / \ *

* / \ *

* -------------- *

* | _ _ | *

* | |_| |_| | *

* | | *

* | __ | *

* | | | | *

* | | | | *

* -------------- *

* / / *

* / / *

**

Enter row and column of region to fill: 6 20

With what character would you like to fill the region: #

Ending picture:

**

* *

* *

* /\ *

* /##\ *

* /####\ *

* /######\ *

* /########\ *

* /##########\ *

* -------------- *

* | _ _ | *

* | |_| |_| | *

* | | *

* | __ | *

* | | | | *

* | | | | *

* -------------- *

* / / *

* / / *

**
Two squares share the same region if they both start off empty and are adjacent (i.e. if one is directly above the other, or if one is directly to the left of the other), or if they are connected by a sequence of other adjacent squares. If the original square (row and column) chosen by the user is already filled (i.e. contains anything other than a space), the final picture should be the same as the starting picture (i.e. nothing extra should be filled).

You can copy a sample "picture.txt" file and a sample executable to the current directory of your Cooper Union account by typing the following commands (there is a single space between the file name and the period):

cp ~sable2/cs102code/hw4/picture.txt .

cp ~sable2/cs102code/hw4/ascii_art .
Hint: The solution is very similar to the solution for solving mazes. If you'd like to start off with the code we went over in class that solves mazes, you can copy either of the two solutions to your account by typing the following commands:

cp ~sable2/cs102code/topic14/solve_maze.c .

cp ~sable2/cs102code/topic14/solve_maze2.c .

Warning: Don't rely too much on those solutions, though! There is no need for globals in this program; you don't have to do anything analogous to storing the best path so far. The parameters that the functions take will be a bit different; the routine to read the grid will not be filling in any starting row or column, and the recursive routine will not need a length parameter but it will need the character that is being used to fill the specified region. And there is no need for backtracking; once you write a character to the grid, it should stay there. Also, if you do decide to start with the maze code, change the variable names and the filename so that they make sense or I will take off some Elegance points!

Your homework will be graded out of 100 points with the following breakdown:

· Correctness: You should follow all instructions exactly as stated above. This means that you must correctly read a picture from “picture.txt”, correctly prompt the user for all appropriate input, correctly fill the specified region with the specified character, and correctly display the original and updated pictures! 65 points.

· Elegance: You should use the concepts we have learned in class, and in particular, recursion, to write your program in a simple, elegant manner. 25 points.

· Format: Your program should use indentation and other spacing that makes the code readable and easy to understand. 5 points.

· Comments: You should include one comment at the top of your program indicating what the program does, one comment above every function describing what the function does, and one or more comments within functions explaining anything that isn’t obvious. 5 points.

Submitting assignments: Your program must compile and run on Cooper Union’s system. Email me your code (to sable2@cooper.edu) as an attachment.
