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Abstract

This paper is concerned with comparing two sets of corresponding six degree of freedom data
that consist of both object position and object orientation. Specifically, the best rotation and
translation that aligns the position and orientation of one data set to the other is constructed by
solving an optimization problem. In addition, a statistical method that identifies outliers in the
data sets is proposed.
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1. Introduction

With the advent of newer and more technologically advanced computer vision systems, there
is greater need for mathematical techniques to calibrate these systems. For example, consider an
object going down an assembly line. Generally, the assembly line stops in order for robots to
operate on the object. But if the robots could visually track the object, then they could operate
on it while the assembly line is in motion and thus increase efficiency. In order for the robots to
track the object, each is equipped with cameras that incorporate a computer vision system. The
goal of this paper is to evaluate the accuracy of a specific computer vision system by comparing
the data it gathers with data that are collected from a precise sensor system considered ground
truth. The problem with comparing these two data sets is that they are not necessarily in the
same coordinate system. Therefore, a transform from the computer vision system’s data stream
to the coordinate system of ground truth is necessary. Once this transform is obtained, a metric
can be calculated to track how well the underlying computer vision system works. By ranking
these metrics, the optimal system can be chosen.

I am interested in evaluating computer vision systems that obtain six degree of freedom
(6DoF) data which represent both the position and the orientation of an object. It should be
noted that the approach presented in this paper can be extended beyond performance evaluation.
In general, this approach will create the rotation and translation that best transforms one set of
6DoF data into another. Therefore, this process can be applied to any computer vision problem
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where 6DoF data are collected and/or calibrated such as visual servoing, object recognition, and
motion estimation.

The 6DoF data represent translations along three perpendicular axes: left and right (along the
x axis), forward and backward (along the y axis), and up and down (along the z axis); along with
the rotations about those three perpendicular axes (roll rx, pitch ry, and yaw rz). In order to evalu-
ate a given 6DoF computer vision system, independent sets of data are simultaneously collected
from the given system and a ground truth sensor. This allows both sets of data to be synchronized
and permits the establishment of a correspondence between the two. Typically, each set of data
has its own coordinate system. Therefore, a transformation is needed in order to compare the
given computer vision system with ground truth. In order to find such a transformation, a matrix
representation for the 6DoF data is used. If the 6DoF representation of an object is represented
as (x, y, z, rx, ry, rz), then it may be arranged as a homogeneous matrix

H =

(
R t
0 1

)
,

where t = (x, y, z)T represents the position of the given object and

R = RxRyRz

with

Rx =

1 0 0
0 cos(rx) − sin(rx)
0 sin(rx) cos(rx)

 ,Ry =

 cos(ry) 0 sin(ry)
0 1 0

− sin(ry) 0 cos(ry)

 ,Rz =

cos(rz) − sin(rz) 0
sin(rz) cos(rz) 0

0 0 1

 ,
represents the orientation of a given object. Given two sets of such corresponding 6DoF data

X =

[(
R0 t0
0 1

)
,

(
R1 t1
0 1

)
, . . . ,

(
Rn−1 tn−1

0 1

)]
X′ =

[(
R′0 t′0
0 1

)
,

(
R′1 t′1
0 1

)
, . . . ,

(
R′n−1 t′n−1

0 1

)]
,

the best rotation Ω and translation τ that fits the data is constructed. In other words, the best

homogeneous matrix H =

(
Ω τ
0 1

)
that minimizes

min
H
‖HX − X′‖2 (1)

is constructed.
The solution H to the minimization problem of Equation (1) involves a two step process:

1. Find the rotation Ω that minimizes

min
Ω

∥∥∥Ω (
R0 t0 . . . Rn−1 tn−1

)
−

(
R′0 t′0 . . . R′n−1 t′n−1

)∥∥∥2
(2)

where

ti = ti − t and t =
1
n

n−1∑
i=0

ti

t′i = t′i − t′ and t′ =
1
n

n−1∑
i=0

t′i .
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2. Set the best transformation
τ = t′ −Ωt, (3)

where Ω is calculated from Step 1.

The simpler problem of finding a closed-form solution to the best rotation and translation
fitting two sets of three-dimensional point correspondences (which represents only position and
hence has 3DoF) has been around since the 1980’s [1, 2]. Most formulations are reduced to
finding a rotation Ω and translation τ that solves

min
Ω,τ
‖(ΩY + τ) − Y′‖2 (4)

where Y and Y′ are 3 × n matrices such that the i-th column of Y′ is given by

y′i = Ωyi + τ + ei,

where yi and y′i are the i-th column of Y and Y′, respectively and ei is a noise vector. This
minimization is commonly known as the absolute orientation problem. One of the issues with
this approach is that there are certain cases where there are many – if not infinite – solutions to
the minimization problem (4) [1]. An example of this case is when all the points lie on the same
line such as when an object goes down a linear assembly line. This degeneracy is not a problem
with the 6DoF method since the object’s orientation is also included in the minimization. This
creates additional constraints to the associated 6DoF linear system and thus a unique solution
can be found. In Section 5.1, an example will be presented that illustrates this degeneracy.

Historically, there are four main approaches to finding closed form solutions for the 3DoF
representation. The first method by Arun, Huang, and Blostein [1] is based on finding the best
orthogonal matrix that fits the two sets of data and declares it the rotation. An equivalent method
- by Horn, Hilden, and Negahdaripour [2] - looks for the square-root of a symmetric matrix to
represent rotation. A problem with both of these methods is that the matrix that is calculated
may not necessarily be a rotation (in fact it may be a reflection). Therefore, the results from the
algorithm may have to be discarded. In contrast, the method that is presented here is guaranteed
to be a rotation matrix. The last two approaches – one by Horn [3] and the other by Walker, Shao,
and Volz [4] – are based on quaternions. Modern extensions of the conventional four methods
have been formulated by Umeyama [5] and Kanatani [6]. There are also many iterative methods
for solving 3DoF systems as suggested in [2]. However, all 3DoF methods only evaluate the
position of the object, neglecting orientation.

In this paper, I advance the formulation of the 3DoF representation by not only considering
the position but also the orientation data of an object. Therefore, a complete performance eval-
uation for a given 6DoF computer vision system can be accomplished. The formulation of our
work is similar to Govindu’s work [7, 8, 9] on estimating the internal parameters of a camera.
However, in Govindu’s work a direct search method is used to solve a variation of the optimiza-
tion problem of Equation (1). In contrast, the 6DoF method presented here formulates a closed
form solution to the problem.

This closed formed solution is similar to the closed formed solutions for the hand-eye cal-
ibration problem AX = ZB. Here, X and Z are unknown homogeneous matrices and A and
B are known homogeneous matrices [10, 11, 12, 13]. Closed form solutions for the hand-eye
calibration method are formulated by separating the problem into its orientational and positional
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components by noting that

AX = ZB(
RA tA

0 1

) (
RX tX

0 1

)
=

(
RZ tZ
0 1

) (
RB tB

0 1

)
.

Thus, the orientational component is represented as

RARX = RZRB,

while the positional component is represented as

RAtX + tA = RZ tB + tZ .

In this paper, X is assumed to be known. Thus, the hand-eye calibration is simplified to A = ZB
for unknown Z =

(
Ω τ
0 1

)
. Then using the closed form solution of the hand-eye calibration method,

Ω is computed as the rotation that best fits the orientational component, i.e.

ΩRB = RA,

while the translation τ is found by calculating the least squares solution to

ΩtB + τ = tA

where Ω is the rotation calculated solely from the orientational component. In other words,
the hand-eye calibration method ignores the positional data when computing the rotation Ω. In
contrast, the method formulated in this paper obtains the rotation Ω from both the orientational
and positional data. A comparison between the closed form solutions of the hand-eye calibra-
tion method, the 3DoF method, and the 6DoF method formulated in this paper is presented on
simulated data in Section 5.2 and on real data in Section 5.3.

In this paper, ‖ · ‖ denotes the Frobenius norm, so

‖A‖ =

√
tr

(
AAT )

=

√
tr

(
AT A

)
where T denotes the transpose operator. And, tr() denotes the matrix trace operation, while
diag(d1 . . . dn) represents the diagonal matrix with entries d1 . . . dn.

2. Simplifying Rotation and Translation

Here, I will outline the methodology that reduces the original system (1) to the two-step
process shown in Equation (2) and Equation (3). First, observe that

‖HX − X′‖2 =

∥∥∥∥∥∥
(
Ω τ
0 1

) (
R0 t0 . . . Rn−1 tn−1
0 1 . . . 0 1

)
−

(
R′0 t′0 . . . R′n−1 t′n−1
0 1 . . . 0 1

)∥∥∥∥∥∥2

=

∥∥∥∥∥∥
(
ΩR0 − R′0 Ωt0 + τ − t′0 . . . ΩRn−1 − R′n−1 Ωtn−1 + τ − t′n−1

0 0 . . . 0 0

)∥∥∥∥∥∥2

=
∥∥∥∥Ω (

R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
+

n−1∑
i=0

‖Ωti + τ − t′i‖
2 (5)
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Now, let the centroids for the two data sets be given by

t =
1
n

n−1∑
i=0

ti and t′ =
1
n

n−1∑
i=0

t′i

and define
T = τ + Ωt − t′.

Then for i = 0, . . . , n − 1
ti = ti − t and t′i = t′i − t.

Therefore,

n−1∑
i=0

‖Ωti + τ − t′i‖
2 =

n−1∑
i=0

‖Ω(ti − t) − (t′i − t′) + τ + Ωt − t′‖2

=

n−1∑
i=0

‖Ωti − t′i + T‖2

=

n−1∑
i=0

‖Ωti − t′i‖2 + 2TT
(n−1∑

i=0

Ωti − t′i
)

+ n‖T‖2.

Since ti and t′i are mean-adjusted,

n−1∑
i=0

ti =

n−1∑
i=0

t′i = 0.

Thus,
n−1∑
i=0

Ωti − t′i = 0,

and

n−1∑
i=0

‖Ωti + τ − t′i‖
2 =

n−1∑
i=0

‖Ωti − t′i‖2 + n‖T‖2. (6)

Moreover, if Equation (5) is minimized then

min
H
‖HX − X′‖2 = min

Ω,τ

∥∥∥∥Ω (
R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
+

n−1∑
i=0

‖Ωti + τ − t′i‖
2

= min
Ω,τ

∥∥∥∥Ω (
R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
+

n−1∑
i=0

‖Ωti − t′i‖2 + n‖T‖2

= min
Ω,τ

∥∥∥∥Ω (
R0 t0 . . . Rn−1 tn−1

)
−

(
R′0 t′0 . . . R′n−1 t′n−1

)∥∥∥∥2
+ n‖T‖2

Note for any given rotation Ω, T = 0 by defining

τ = t′ −Ωt ⇒ T = τ + Ωt − t′ = 0.
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Thus, in order to solve Equation (1), first calculate Ω that minimizes

min
Ω

∥∥∥∥Ω (
R0 t0 . . . Rn−1 tn−1

)
−

(
R′0 t′0 . . . R′n−1 t′n−1

)∥∥∥∥2
,

then set
τ = t′ −Ωt.

2.1. Finding Ω

In the previous section, it was shown that finding the best fitting homogeneous transformation
matrix is dependent on finding the best rotation that minimizes Equation (2):

min
Ω

∥∥∥Ω (
R0 t0 . . . Rn−1 tn−1

)
−

(
R′0 t′0 . . . R′n−1 t′n−1

)∥∥∥2
.

For simplicity, this problem will be reformulated to

min
Ω

∥∥∥ΩX − X′
∥∥∥2
, (7)

where the sets which include the mean-adjusted positional data

X =
(
R0 t0 . . . Rn−1 tn−1

)
X′ =

(
R′0 t′0 . . . R′n−1 t′n−1

)
.

However, ∥∥∥ΩX − X′
∥∥∥2

=
∥∥∥X

∥∥∥2
− 2tr(ΩX X′

T
) +

∥∥∥X′
∥∥∥2
.

Therefore, the Ω that solves the minimization problem of Equation (7) is equivalent to the rotation
matrix Ω that solves

max
Ω

tr(ΩX X′
T

) (8)

There is a plethora of research on finding the best rotation matrix Ω. Most of these methods
are based on finding the best orthogonal matrix that fits the data. In most applications, this
method works. However, there can be instances where the best orthogonal matrix that is produced
could have determinant −1, meaning that the best orthogonal matrix is not a rotation but actually
a reflection. In this section, a method for calculating the best rotational approximation to a set
of data that is guaranteed to have determinant 1 will be described. This work reaches the same
conclusion as Umeyama’s work [5], though the formulation of the proof presented here is much
simpler.

In order to construct the best rotation, the following Lemma will be of importance.

Lemma 2.1. For a given 3 × 3 matrix M and rotation Ω

tr(ΩM) ≤ tr(DΣ), (9)

where

D =

diag(1, 1, 1) if det(VUT ) = 1,
diag(1, 1,−1) if det(VUT ) = −1

and the full singular value decomposition (SVD) of

M = UΣVT .
6



Proof. First notice that

tr(ΩM) = tr(ΩUΣVT ) = tr(VT ΩUDDΣ),

since D2 is the identity and tr(AB) = tr(BA) for matrices A and B of appropriate degree. But
Ω̂ = VT ΩUD is an orthogonal matrix with determinant 1 and hence a rotation matrix. Therefore,

tr(ΩM) = tr(Ω̂DΣ) ≤ tr(DΣ)

�
Moreover, if a rotation Ω can be constructed such that

tr(ΩX X′
T

) = tr(DΣ),

then the minimization problem of Equation (7) is solved.

Theorem 2.2. The solution to the maximization problem of Equation (8) is

Ω = VDUT

where the full SVD of the 3 × 3 matrix

X X′
T

= UΣVT

and

D =

diag(1, 1, 1) if det(VUT ) = 1,
diag(1, 1,−1) if det(VUT ) = −1

Proof. From Lemma 2.1, the maximization problem of Equation (8) is solved if a rotation matrix
Ω can be constructed such that

tr(ΩX X′
T

) = tr(DΣ).

Let
Ω = VDUT .

Then
tr(ΩX X′

T
) = tr([VDUT ][UΣVT ]) = tr(DΣ).

�
Therefore, the optimal homogeneous matrix H =

(
Ω τ
0 1

)
may be constructed by

1. Setting
Ω = VDUT ,

where the SVD of
X X′

T
= UΣVT

and

D =

diag(1, 1, 1) if det(VUT ) = 1,
diag(1, 1,−1) if det(VUT ) = −1

.

2. Setting
τ = t′ −Ωt.
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3. Error Metrics

For many applications, it is beneficial to understand how well the homogeneous matrix H fits
the orientation of the 6DoF data independently of the position of the 6DoF data. Examples of
such applications arise in the hand-eye calibration methods that were presented in Section 1.

To separate the data, consider Equation (5),

‖HX − X′‖2 =
∥∥∥∥Ω (

R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
+

n−1∑
i=0

‖Ωti + τ − t′i‖
2

=

n−1∑
i=0

∥∥∥ΩRi − R′i
∥∥∥2

+

n−1∑
i=0

∥∥∥Ωti + τ − t′i
∥∥∥2
.

This is a separation of the orientational data from the positional data. Moreover, once the Ω and
τ of the homogeneous matrix H are calculated from the procedure outlined in Section 2, a means
to find how well Ω and τ fit the data can be constructed. Notice that for the orientation∥∥∥ΩRi − R′i

∥∥∥2
=

∥∥∥ΩRi‖
2 − 2tr

(
ΩRiR

′T
i

)
+ ‖R′i‖

2

= 6 − 2tr
(
ΩRiR

′T
i

)
= 6 − 2(1 + 2 cos θ)
≤ 8.

since ‖R‖2 = 3 and tr(R) = 1+2 cos θ for any rotation matrix R with eigenvalues {1, cos θ±i sin θ}.
Therefore, if θ is approximately equal to 0, then 6 − 2(1 + 2 cos θ) ≈ 6 − 2(3) = 0, whereas if
θ ≈ π then 6 − 2(1 + 2 cos θ) ≈ 6 − 2(−1) = 8. Therefore, a metric or percentage of accuracy to
evaluate the orientation for a given homogeneous matrix H (hence rotation Ω and translation τ)
can be calculated as

0 ≤ 1 −
1
8

∥∥∥ΩRi − R′i
∥∥∥2
≤ 1.

A metric for the positions can be calculated in a similar way. In this case, the norm

‖Ωti + τ − t′i‖
2.

That is, the closeness of the vector Ωti + τ to t′i for a given rotation Ω and translation τ can be
constructed. In order to construct a metric or percentage of accuracy for this data, consider the
dot product of the normalized vectors, i.e.

0 ≤

∣∣∣∣∣∣∣ (Ωti + τ)T t′i∥∥∥Ωti + τ
∥∥∥ ∥∥∥t′i

∥∥∥
∣∣∣∣∣∣∣ ≤ 1.

If the angle between the vectors is 0, then the algorithm has 100% accuracy. A point of concern
with this method is that the magnitude of the vectors are not taken into consideration. Thus, this
metric may exhibit 100% accuracy while the vectors are not exactly equal. As a result, one may
want to compare the magnitude of

‖Ωti + τ − t′i‖

with the magnitude of the positions ti and t′i to determine the accuracy of the algorithm. However,
this metric does not have an upper-bound so it may be difficult to compare the results from
different problem sets as is possible with the first metric presented.
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4. Outliers

Outliers generally arise when collecting data. In this section, a statistical method is con-
structed that detects outliers in the data sets. The method is based on the statistical tool known
as the Interquartile range (IQR). The IQR defines the difference between the 25th (Q1) and 75th
(Q3) percentiles of the data stream. In other words,

IQR = Q3 − Q1.

Definition 4.1. A point x in the data stream is an outlier if

x ≥ Q3 + 1.5 × IQR.

Using this definition, which is based on Tukey’s work [14], a statistical method to detect outliers
in the data stream is constructed.

The method begins by constructing the best homogeneous matrix

H =

(
Ω τ
0 1

)
,

to fit the two data sets as outlined in Section 2. Then for each set of points

X =

[(
R0 t0
0 1

)
,

(
R1 t1
0 1

)
, . . . ,

(
Rn−1 tn−1

0 1

)]
X′ =

[(
R′0 t′0
0 1

)
,

(
R′1 t′1
0 1

)
, . . . ,

(
R′n−1 t′n−1

0 1

)]
,

calculate the error
ei = ‖HXi − X′i‖

2.

From this collection of ei, outliers e j are defined using Definition 4.1. The corresponding X j =(
R j t j
0 1

)
and X′j =

(
R′j t′j
0 1

)
from the data sets X and X′, respectively, are thrown out and a new best

fitting homogeneous matrix H is calculated from the updated X and X′. In our experiments, one
iteration of this method is sufficient to locate outliers. However, the iteration could continue until
the norm between the previous and new homogeneous matrix is under a predetermined tolerance
or until no outliers are detected.

5. Experiments

5.1. Linear Motion Degeneracy
In this section, the degeneracy of the 3DoF method that occurs when all points lie on the

same line is explored. To illustrate, consider the mean-adjusted linear set of positional data

Y =

−2 −1 0 1 2
0 0 0 0 0
0 0 0 0 0


and its perfectly corresponding set of mean-adjusted points

Y
′

= ΩY,
9



where Ω is a random rotation matrix. For simplicity we assume that the translation τ = 0. These
sets of data are collinear and thus infinite solutions for the optimal rotation matrix to fit the data
exist [1]. This is a result of Y Y

′T
being a rank-1 matrix. Specifically, the SVD of

Y Y
′

= σ1u1vT
1 + 0u2vT

2 + 0u3vT
3

where σ1 is the leading singular value and ui and vi are the left and right singular vector respec-
tively for i = 1, 2, 3. Since this matrix is rank-1, the second and third singular values are 0, and
thus infinite options for the corresponding left and right singular vectors exist. As a result, the
optimal rotation matrix that is formulated from these left and right singular vectors is not unique.
In contrast, the 6DoF method requires both the positional and orientational data. Thus, the data
are represented as

X =

 −2 −1 0 1 2
R1 0 R2 0 R3 0 R4 0 R5 0

0 0 0 0 0


and its perfectly corresponding set of data

X
′

= ΩX.

Here Ri represents the orientation for points i = 1, 2, . . . , 5. Notice that these sets are not collinear
since the columns of each orientation Ri are orthogonal and thus full-rank. Therefore, the 6DoF
method formulates a unique rotation for this data [1]. It should be noted that the hand-eye calibra-
tion method will also formulate a unique rotation since the data consist of only the orientations
which again form a non-collinear set. Thus, a unique rotation matrix can be found.

5.2. Comparison of Methods with Simulated Data

In this section, the hand-eye calibration method, the 3DoF method, and the 6DoF method for-
mulated in this paper are explored. Recall, the hand-eye calibration method obtains the rotation
Ω by optimizing the orientational data, i.e. by solving

min
Ω

∥∥∥∥Ω (
R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
.

In contrast, the 3DoF method obtains the rotation Ω by optimizing the positional data, i.e. by
solving

min
Ω,t

n−1∑
i=0

‖Ωti + τ − t′i‖
2.

Now consider the formulation of Ω from the 6DoF method which is constructed by minimizing
Equation (5)

min
H
‖HX − X′‖2 = min

Ω,τ

∥∥∥∥Ω (
R0 . . . Rn−1

)
−

(
R′0 . . . R′n−1

)∥∥∥∥2
+

n−1∑
i=0

‖Ωti + τ − t′i‖
2.

One can easily see that this formulation is just a combination of the hand-eye calibration method
and the 3DoF method. In other words, the rotation Ω for the 6DoF method is formulated by
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Figure 1: Comparison of the accuracy of the 3DoF method, the hand-eye Calibration (HE) method, and the 6DoF method
for varying positional scale on simulated data.

minimizing over both the orientational data and the positional data. Consequently, this rotation
gives a more accurate representation for 6DoF performance evaluation. It should be noted that
once a rotation Ω is given, then the translation t is calculated in the same manner for each of the
three methods.

A simulation comparing all three methods is shown in Figure 1. The data were constructed by
obtaining 20 equally spaced points θi between 0 and π. Then the positional data were constructed
as

ti = [cos(θi), sin(θi), 0]T

t′i = Ω(π/3) ti + τ

where t was a randomly generated unit vector and

Ω(x) =

1 0 0
0 cos(x) − sin(x)
0 sin(x) cos(x)

 . (10)

Similarly, the orientational data were constructed as

Ri = I
R′i = Ω(π/2)

where I is the 3-dimensional identity matrix and Ω(π/2) is defined in Equation (10).
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For each of the graphs in Figure 1 the scale for the positional data is changed. Notice as the
scale increases, the fluctuations of the hand-eye calibration method increases. This is a result of
the calculation of the rotation matrix Ω for the hand-eye calibration method being based solely
on the orientational data. In contrast, the 3DoF method stays constant since this method is scale-
invariant; while the 6DoF method, in general, stays below the 3DoF method since the 6DoF
method constructs the homogeneous matrix H that minimizes ‖HX − X′‖.

In Figure 2, the number of points θi between 0 and π were increased in order to compare
the complexity of the algorithms. Since the calculation of the rotation for the 6DoF method is a
combination of both the hand-eye calibration method and the 3DoF method, one would assume
that the 6DoF method would be much slower to compute. However, the time to compute each
method is approximately the same (Figure 2). This is because the order of operations for each
method is the same. In order to see this point, one would just have to compare the formulation
of X X′

T
from which the rotation matrix of each method is computed (see Section 2.1), since the

rest of the algorithm for each method is identical. The operation count to compute X X′
T

from
each method is

Method Operation Count
3DoF 6n2 + 9n − 2
Hand-Eye 54n2 − 3n
6DoF 72n2 − 2

which each have the same order of operations O(n2). Note that the operation counts for the 3DoF
method and the 6DoF method include the operation counts from averaging and centering the
positional data (see Equation (6)). In contrast, the hand-eye calibration method only includes
the operation count for averaging the positional data since centering the positional data for this
method is not needed.

5.3. Comparison of Methods with Real Data

A series of experiments conducted at the National Institute of Standards and Technology
in November of 2009 compared the 6DoF laser tracker data (considered to be ground truth)
with data collected using the eVisionFactory system (http://www.roboticvisiontech.com/). The
eVisionFactory system calculates the rotation and translation (6DoF) by matching features of an
image with features from a training image. If a specific feature is not located in an image, the
system flags the corresponding rotation and translation data as being prone to errors. Hence, this
data could correspond to an outlier.

Data sets from the laser tracker system and the eVisionFactory system were comprised of
time-synced 6DoF data collected from a moving robot arm and a stationary object. An illustration
of the setup is shown in Figure 3. Specifically, the laser tracker system collected data that consist
of the active target (AT) in laser tracker (LT) coordinates (LTHAT), while the eVisionFactory
system collected data that consist of the object (O) under test in camera (C) coordinates (CHO).
Here, the active target is the reflective object from which the laser tracker system calculates the
orientation and position of the target. This active target, along with the camera, are attached to
the robot tool (RT) of the eVisionFactory system as can be seen in Figure 3. Therefore, a rigid
homogeneous transformation

ATHC =AT HLT ×LT HRT ×RT HC

12
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Figure 2: Comparison of the computational cost of the 3DoF method, the hand-eye Calibration (HE) method, and the
6DoF method for varying positional scale on simulated data.

from the camera to the active target can be found using external calibration techniques. Specifi-
cally, LTHRT can be found by rotating the robot tool from a user-defined home position amongst
its three axes of rotation while recording the sequence of points traced out by the active target.
After fitting circles to these sets of points, the axes of rotation of LTHRT are set as the normals
through the center of each circle and the intersection of these normals is the origin of LTHRT.
The transformation ATHLT is the home position of the active target in laser tracker coordinates.
Camera calibration was used to determine RTHC. If the laser tracker system is reconstructed as

LTHC =LT HAT ×AT HC,

then the eVisionFactory system OHC can be compared with the laser tracker system LTHC by
constructing a homogeneous matrix LTHO as outlined in this paper. Further details of the experi-
mental setup and design can be found in [17].

An experiment was conducted where both the orientational and positional motions of the
camera were adjusted [17] with results appearing in Figure 4. It should be noted that the same
data was used for all methods in order to have a non-biased comparison between the three meth-
ods. The percentage of accuracy of the rotations with respect to hand-eye calibration method
is nearly 100%, with respect to the 6DoF method is around 98%, and with respect to the 3DoF
method is around 95%. The 6DoF method’s rotational accuracy is between the 3DoF method
and the hand-eye calibration method. This is a result of the 6DoF method obtaining it’s rotation
matrix from both the orientational and positional data. In contrast, the 3DoF method obtains it’s
rotation matrix solely from the positional data, while the hand-eye calibration method obtains
it’s rotation matrix solely from the orientational data. The hand-eye calibration method achieves

13
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Figure 3: Experimental Setup of the eVisionFactory System.

near perfection with respect to the rotation metric since this method obtains it’s rotation matrix
by optimizing the rotation metric; i.e. by solving minΩ

∑n−1
i=0 ‖ΩRi − R′i‖

2. With regards to the
translations, the three methods are nearly identical – all having very high accuracy. It should be
noted that the homogeneous matrix computed for each method is highly dependent on the noise
of the data. In this experiment, the data collected was not very noisy and thus a high level of
accuracy was attained for each method. In general, this may not be the case (perhaps due to im-
age processing and data collection) and thus more drastic differences between the three methods
could be attained as is suggested in the simulated experiments of Section 5.2.

A second experiment was used to test the IQR method presented in Section 4 with results
obtained from hand-calibration. Specifically, both methods constructed the homogeneous matrix
LTHO. It should be noted that the hand-calibration results were constructed by surveying the
experimental setup and calculating the rotation and translation (hence homogeneous matrix) by
hand. Consequently, the hand-calibration is prone to human error. Results are shown in Figure 5.
In this figure, one can see that the IQR method locates outliers in the system (circles around the
dots). These outliers match points that the eVisionFactory system acknowledges as outliers due
to a feature being missing. In addition, one can see that the IQR method outperforms both the
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Figure 4: Comparison of the accuracy of the 3DoF method, the hand-eye calibration (HE) method, and the 6DoF method
on real data obtained using the eVisionFactory system.

non-IQR and hand-calibration methods. This is due to the influence of outliers in calculating the
homogeneous matrix for the non-IQR method and human error for the hand-calibration method.

6. Conclusion

In this paper, an algorithm that constructs the best homogeneous matrix H that fits two sets of
corresponding 6DoF data was formulated. The algorithm was tested on four experimental setups.
For the first setup, the degeneracy of the 3DoF method for linear motion was explored. For the
second setup, the 3DoF method, the hand-eye calibration method, and the 6DoF method were
compared on simulated data, while the third setup compared the methods on real data. Finally
the fourth setup tested the iterative method for identifying outliers on 6DoF data sets. For each
of these experimental setups, a homogeneous matrix that represents a linear transformation from
one coordinate system to the other was formulated using different methods. By comparing these
different methods, the advantages of the 6DoF method was explored. Specifically, it was shown
that the 6DoF method with outlier detection is an efficient and accurate method for comparing
two sets of corresponding 6DoF data.
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