H - Bridge

Switch types:
- relays
- transistors

PWM input

75% duty cycle

25% duty cycle

V_{avg}

t_{on}

T_{period}
Inductive Load Switching

\[+V \]

\[L \rightarrow \text{flyback diode} \]

\[v = L \frac{dI}{dt} \]

H-Bridge MOSFET implementation
Servo (Hobby)

~ 5V operation stall ~ 1A

PWM control

1-2 ms per 20ms \(\Rightarrow\) 1 end \(\Rightarrow\) other end

\(\Rightarrow\) position determined by internal rotary potentiometer
Encoders

"ticks" event: rising/falling edges

Quadrature Encoder

<table>
<thead>
<tr>
<th>Forward</th>
<th>Backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

90° out of phase
Encoders (Continued...)

Encoder w/ index <-> channel that pulses once per revolution

Absolute Encoder
- has coded disk
- outputs absolute angular position
- # of channels -> resolution
- output via parallel or serial interface

Figure 1 Gray Code

Figure 2 Natural Binary
Power Considerations

- Isolate controller to its own power source
- External Drive Motor Power
- External Servo Power
- External sensor Power

⇒ Use of 5v regulator may be required for some sensors