
ECE466:Compilers Unit4/pg 1 ©2025 Jeff Hakner

Semantic Analysis of the C language

In this unit we begin discussion of semantic analysis with an
emphasis on the C language.

Compile-Time vs Run-Time

We can speak of the compiler as existing in two worlds: compile-time, when the compiler
is actually executing, and run-time, when the target program will be executing. The
compiler performs actions, creates data structures, etc. at compile time which result in the
emission of code which, in turn, when executed at run-time, creates and manipulates
values and takes other actions specified in the original source code.

In contrast, an interpreter exists in only one time, because source code is acted upon
immediately. We could think of a compiler as an interpreter, the actions of which are to
emit the target code (e.g. assembly language on the target machine).

Certain values can be computed at compile-time, such as the size of (most) variables,
expressions involving constants, etc. Others, such as the value inside of a variable, are
indeterminate at compile-time.Part of the optimizer’s job is to trace out the flow of
control and data through the program and attempt to predict, to the extent possible, useful
constraints on values which may lead to optimization of target code.

Syntax-Directed Translation

In unit 2 we have seen the use of embedded (semantic) actions within a yacc/bison
grammar, and the passing of synthesized and inherited attributes along the value stack.It
is possible to use these tools to perform the translation from source to target language in
one pass, as the source language is being parsed.This is also known asSyntax-Directed
Tr anslation. The example below compiles expressions to a simple intermediate
language in which there is an unbounded number of temporary registers:

ECE466:Compilers Unit4/pg 2 ©2025 Jeff Hakner

% d e b u g

% e r r o r - v e r b o s e

% {

d e f i n e Y Y D E B U G 1

d e f i n e Y Y S T Y P E c h a r *

i n t t m p c o u n t e r ;

c h a r * t m p ()

{

c h a r b u f [2 5 6] ;

s p r i n t f (b u f , " % % T M P % 0 4 d " , + + t m p c o u n t e r) ;

r e t u r n s t r d u p (b u f) ; / / N O T E : M e m o r y l e a k !

}

% }

% t o k e n N U M

% t o k e n N L

% l e f t ’ + ’ ’ - ’

% l e f t ’ * ’ ’ / ’

% n o n a s s o c ’ (’

% %

s t a r t :

e x p r _ l i n e

| s t a r t e x p r _ l i n e

;

e x p r _ l i n e :

e x p r N L { p r i n t f (" \ t P R I N T % s \ n " , $ 1) ; }

| N L

;

e x p r : N U M { $ $ = $ 1 ; }

| e x p r ’ + ’ e x p r { p r i n t f (" \ t % s = A D D % s , % s \ n " , $ $ = t m p () , $ 1 , $ 3) ; }

| e x p r ’ - ’ e x p r { p r i n t f (" \ t % s = S U B % s , % s \ n " , $ $ = t m p () , $ 1 , $ 3) ; }

| e x p r ’ / ’ e x p r { p r i n t f (" \ t % s = D I V % s , % s \ n " , $ $ = t m p () , $ 1 , $ 3) ; }

| e x p r ’ * ’ e x p r { p r i n t f (" \ t % s = M U L % s , % s \ n " , $ $ = t m p () , $ 1 , $ 3) ; }

| ’ - ’ e x p r % p r e c ’ (’ { p r i n t f (" \ t % s = M U L % s , - 1 \ n " , $ $ = t m p () , $ 2) ; }

| ’ (’ e x p r ’) ’ { $ $ = $ 2 ; }

;

% %

m a i n ()

{

y y d e b u g = 0 ;

y y p a r s e () ;

}

y y e r r o r (c h a r * e r r)

{

f p r i n t f (s t d e r r , " s y n t a x e r r o r : % s \ n " , e r r) ;

}

ECE466:Compilers Unit4/pg 3 ©2025 Jeff Hakner

The$$ value of each symbol is the temporary register in which its run-time value will be
found. E.g.
I N P U T :

3 * 4 + 1 0 * 5

O U T P U T :

% T M P 0 0 0 3 = M U L 3 , 4

% T M P 0 0 0 4 = M U L 1 0 , 5

% T M P 0 0 0 5 = A D D % T M P 0 0 0 3 , % T M P 0 0 0 4

P R I N T % T M P 0 0 0 5

(Note that in the above example code, there is no "garbage collection."The strdup
contains an implicitmalloc and at no point is there afree . This would be a "memory
leak" problem in a real compiler)

At one time, a one-pass compiler was extremely desirable, because memory and disk
space was limited.However, writing a one-pass compiler, using syntax-directed
translation, constrains us to following the exact parse tree that the syntax generates.This
becomes cumbersome as language complexity grows, because the structure of the source
language grammar might not reflect well the order in which target code needs to be
generated.

In modern compilers, the embedded semantic actions create an intermediate
representation (IR) in memory, which is then re-processed one or multiple times, refining
and optimizing it, and finally transforming it into the target language.We’l l discuss IR in
more detail in Unit 5. Not all of the IR corresponds to executable (run-time) constructs.
E.g. the compiler may use the same techniques to build compile-time representations of
data types.

Abstract Syntax Trees

Many compilers use a graphical form of representation known as anAbstract Syntax
Tr ee (AST). It is called abstract because, while it is related to the parse tree, it is not
literally the parse tree. Certain grammar symbols, which exist purely for parsing
purposes, might not be reflected in the AST, or the AST may have a different ordering or
structure. TheAST may not actually even be a "tree," rather it is often in the form of a
directed graph.

An AST consists of nodes and edges.Each node may have attributes associated with it.
In implementing an AST in C, the nodes are often held in dynamically allocated structs,
with the edges being pointers within those structs.Each node has a different set of
attributes, depending on the node type, and this makes the AST a polymorphic data
structure, in that edges from one AST node can point to another AST node of arbitrary
type.

In many cases, construction of an AST using embedded actions is straightforward and
follows naturally from the actual syntax. As an example, let’s look at a passage from the

ECE466:Compilers Unit4/pg 4 ©2025 Jeff Hakner

"expression calculator" grammar, re-written to generate an AST:
/* Note: some syntax needed to implement a polymorphic AST has been elided */
expr: NUM {$$=ast_new(AST_NUM);

$$->number=$1.number;}
|expr ’+’ expr {$$=ast_new(AST_BINOP);

$$->op=’+’;
$$->left=$1;
$$->right=$2;}

In the first rule, an AST node is created for a terminal, and is filled in with a copy all of
the information needed regarding that terminal. This information had been passed up
from the lexer in yylval and was automatically copied to the yacc/bison value stack as
$1.

In the second rule, assume that the semantic values from the two instances of the rhs non-
terminalexpr are pointers to correct AST representations of those subexpressions. Then
by creating a new AST node to represent the addition operation, and connecting it to the
two subexpressions, the semantic value associated with the lhsexpr is, by induction, the
correct representation of that expression.

NUM

value=3

NUM

value=4

NUM

value=4

NUM

value=3

expr:
expr ’+’ expr {$$=ast_new(BINOP);

$$−>left=$1;$$−>right=$3;$$−>op=’+’;}

| NUM {$$=ast_new(NUMBER);
 $$−>value=$1.number;}

BEFORE REDUCING
$1 $3

AFTER REDUCING

BINOP

left right

op=’+’

$$

RULES AND EMBEDDED ACTIONS

The Symbol Table

Symbolic names are a critical part of any programming language. The symbol table
subsystem of a compiler is responsible for keeping track of which symbolic names have
been seen, and the attributes associated with each instance.

The symbol table could be conceptually thought of as having the following abstract
interface:

• create : Create a new, empty symbol table.

ECE466:Compilers Unit4/pg 5 ©2025 Jeff Hakner

• destroy : Destroy a symbol table including any storage which it consumes.
• lookup : Giv en an existing symbol table and scope, a name, and a namespace class,
return the associated symbol table entry, if it exists, otherwise return the fact that the
symbol does not exist. Thelookup operation must go through the stack of scopes until
the outermost (file scope) before concluding that the entry does not exist. The entry
contains attributes, which will be discussed below.
• enter : Giv en an existing symbol table, a name, a namespace class, and a set of
attributes, enter this symbol in the table.A boolean parameter can determine whether, if
a symbol with the same name and namespace already exists in the table, to replace the
definition or to return an error.

Identifiers and attributes

The attributes which are stored with each symbol will vary depending on the use of the
symbol. In the C language, the lexical pattern consisting of an underscore or letter,
followed by 0 or more underscores, letters, or numbers, is called an "identifier". There are
10 different purposes for which identifiers may be used (not counting pre-processor uses
or C23 extensions):
• variable name (including function formal parameters)
• function name
• typedef name
• enumeration constant
• struct tag
• union tag
• enum tag
• label
• struct member
• union member

For discussion purposes, here is an example (not necessarily exhaustive or complete) of
the attributes which the compiler needs to maintain during compilation for each identifier
class:
• variable: type, storage class, offset within stack frame (for automatic storage class only),
initializer constant or expression.
• function: type (includes return type and arguments), storage class (extern or static),
presence ofinline specifier, whether a definition for the function (the actual code) has
been seen yet.
• struct/union tag: symbol table containing member definitions, whether definition is
complete or not.
• enum tag: once the definition is complete, nothing. One might try to link back to all of
the enum constant names which are defined under this tag, for error reporting purposes.
• enum constant: value. Onemight want to link to the enum tag too. In the C language,

ECE466:Compilers Unit4/pg 6 ©2025 Jeff Hakner

identifiers which are enum constants simply become ints in the expression, i.e. the enum
tag does not propagate. Ifx is of typeenum e , the type of the expression(x) is int , not
enum e .
• statement label: Intermediate code or assembly language label of the basic block begun
by the C-language label. (This will make more sense once code generation is discussed).
• typedef name: equivalent type.
• struct/union member: type, offset (within struct only), bit field width and bit offset.

For error reporting purposes, all symbol table entries should also contain the file name
and line number at which the symbol was first defined (entered into the symbol table).
This will greatly assist in giving useful error messages in the case of duplicate or
conflicting definitions.

Namespaces

It is possible in C for the same identifier name, in the same scope, to refer to different
things, because that identifier use would be unambiguous based on surrounding syntax.
The following are the groups, orname spaces, which C defines:
• Labels, because they are used either with thegoto keyword, or with the syntaxlabel
’:’ statement . Both uses are unambiguous.
• Tags: e.g.foo in struct foo , hav e their own namespace. Their use is unambiguous
because it is always preceded by the struct, union or enum keyword. However, struct,
union and enum tags are all lumped together. E.g.
int f;
struct f {int f;} g; //OK
union f {int h;} u; //Not OK, tag f is already used

• Each struct or union definition creates an independent, private namespace which is in
effect a mini-scope or mini- symbol table. The member names of any struct or union,
therefore, will never conflict with member names of any other struct or union, nor with
any of the other identifier classes. This is because member names can only be used as the
right-hand operand to a . or -> operator, and the structure or union to which they belong is
then implied by the type of the left-hand operand.
• All other identifier classes: enum constants, typedef names, variable or function names.

Scopes and Visibility

A particular instance of an identifier is not necessarilyvisible at every line of the
program. TheC standard identifies the followingscopesof visibility:

• File scope: an identifier with file scope is visible from its point of declaration until the
end of that.c file (not considering pre-processor directives such as#include). File scope
applies to declarations seen outside of any function definitions, i.e. "global" declarations.

ECE466:Compilers Unit4/pg 7 ©2025 Jeff Hakner

• Block scope: An opening curly brace within the body of a function introduces a new
block scope.Identifiers declared within a block are visible from that point until the end
(closing curly brace) of that block. Note that just as blocks are nestable, so too are block
scopes. Blockscopes can be thought of as translucent with the innermost block on top.
Declarations which happen in an inner block obscure the visibility of identifiers
appearing in an outer block, until that inner block is done. Also, declarations in a block
scope may obscure file scope.

• Function scope: Function scope is associated with the outermost block of a function.
Function and block scopes are very similar, the primary distinction being in the handling
of statement labels. Labels are always placed into the scope of the function in which they
appear. If a label is defined inside of an inner block scope, it is nonetheless visible
throughout the entire function. Note that in the definition of a function, the formal
parameters (which appear inside the parentheses, plus the declarators between there and
the opening brace in classic C) have a scope as if they had been declared at the beginning
of the main block of the function.

• Prototype scope: The C standard uses this term to handle the case of identifiers which
appear in a prototyped function declarator, e.g.:
unsigned fu(int a,double d);

This is not the same as thedefinition of the function, which includes the actual code
associated with it. The identifiers which appear in the prototype are not meaningful, just
the list of types of the arguments, and so the introduction of this term "prototype scope" is
of dubious value to the compiler-writer. During a function definition, however, we’ll see
that the prototype scope gets promoted to be the function’s scope.

ECE466:Compilers Unit4/pg 8 ©2025 Jeff Hakner

int i;

int f(int p)
{
 /*...*/
 {
 int x(int a,int b);
 }
} current scope

proto

block

function

file (global)

z:

i

f

int i;

i

z
xx

a

b

p

(installed after
)

Will be destroyed
after)

In implementing a symbol table, one approach might be to create a stack (or linked list)
of scopes, each pointing to its associated symbol table. When looking up an identifier,
the symbol table at the top of the stack, corresponding to the innermost scope, is
consulted first, then if nothing is found, the next one, etc. until the bottom of the stack,
representing file scope, is reached.To handle the different namespaces, one could
maintain an array of symbol tables for each scope, one element per name space.
Alternatively, one could add a namespace tag to each symbol table entry and only
consider a match to occur if both the name and the namespace are identical.

Point of Identifier Installation

The point at which an identifier is installed into the symbol table depends on identifier
class:
• variable name: End of declarator (see below "Declarators and Abstract Declarators") in
which variable name is mentioned.
• function name: End of declarator in which function name is mentioned, or point of use
in the case of implicit declaration (see below)

ECE466:Compilers Unit4/pg 9 ©2025 Jeff Hakner

• typedef name: End of declarator in which typedef name is mentioned.
• struct/union tag: See discussion of structure and union incomplete types.
• struct/union member: End of declarator, appearing within a declaration within a
struct/union definition, in which member name is mentioned.
• enum tag: end of enum definition (closing brace)
• enum constant name: after name is mentioned (possibly with explicit value) in enum
definition.
• label: definition point at labeled statement, or implicit forward declaration when used in
goto.

Declarators and Abstract Declarators

The termdeclarator is defined in the C standard’s grammar as the syntactic element in
which the identifier is mentioned, and resembles a tiny subset of the C expression syntax.
For example, in the following code:
const int a,*pa,*ap[10];

The tokensconst int form thedeclaration specifiers, and each of the items delimited
by commas is a declarator. Declarators are formed with identifiers, pointer constructs,
array constructs, function constructs, and parenthesized declarators.They follow the
same rules of operator precedence as the C expression grammar, and indeed C’s
declaration syntax may informally be described as "you declare it like you would use it
later on." There are alsoabstract declarators which are identical to "normal"
declarators except for the ommision of identifiers.They are used in abstract type names,
which can appear only in cast and sizeof expressions, or in function prototypes.For
example(int **[]) is an abstract type of (array(unknown size, of (pointer to(pointer
to(int))))) This "missing identifier" syntax is often confusing.

Forward Declarations

Generally speaking, in the C language, identifiers must be declared in some visible scope
before they are used. When a name is used prior to explicit declaration or definition, that
is known as aforward declaration. This is allowed only under these specific
circumstances:

• struct and union tags may be referenced before their member list is declared. This is
known as an incomplete struct/union type.
• statement labels may be used in agoto before their definition point (a labeled statement)
is seen. There may be 0 or moregoto uses before the definition point, but only one
definition point is allowed. At the time of the forward reference, the label may be
installed in the symbol table as an incomplete label. Then upon seeing the labeled
statement, the symbol table entry would be marked as complete. If no such definition
point is encountered by the end of the function, this is a fatal error.

ECE466:Compilers Unit4/pg 10 ©2025 Jeff Hakner

• functions may be called without first declaring the identifier to be the name of a
function. Whenthis occurs, animplicit declaration is made in the current scope, and the
identifier is assumed to have type (int ()) , a function returning int and taking an
unknown argument list. In C-23, this is deprecated, as function types with no prototype
are no longer permitted.

Re-declaration of Identifiers

Generally it is an error when a declaration attempts to install a name in the symbol table
when that same name (in the same namespace) is already installed in the current scope.
There are exceptions:
• Redeclaration of a function name is permitted as long as the new declaration matches
the existing one in terms of type (there are complicated rules for determining whether two
function prototypes are equivalent) and storage class.
• Variable declarations with an explicit extern storage class do not conflict with previous
or future declarations of the same variable (with or without theextern), so long as the
declared types are equivalent, and the other declaration does not have storage class
static , auto or register . This allows, in a compilation from multiple .c files, for the
variable to be declared in a header file asextern , with that same header file#include ’d in
the .c file in which the variable is actually declared.
• Variable declarations in global scope without an explicit storage class and without an
initializer may be repeated, so long as the declared types are equivalent. E.g.int i; int
i; is a valid C program. This is known as the "Common Block" model.

Storage Class and Duration

The scope of a variable (where it is lexically visible in the program) is not necessarily the
same as its lifetime.Variables declared in global (file) scope have a duration which is the
duration of the entire program.Variables declared inside a function scope generally have
a duration which is that of the function.However, static variables declared within a
function have local scope, but global duration.auto variables declared inside a block
scope lexically go out of scope at the end of the block, but their storage duration (or
"storage scope") is the entire function. Consider:
int *f()
{

int *p;
/*...*/
{ i nt x=66; p = &x; }
/* p still points to valid memory here */
return p; /* Dangerous, p points to memory which will be gone */

}

The C syntax allows for certain storage class specifiers to be given in a declaration or

ECE466:Compilers Unit4/pg 11 ©2025 Jeff Hakner

function definition to control how and for how long the object being declared will be
stored. Theseare auto, register, extern and static. The semantics of these storage
classes are well documented in the C standard and other texts and will not be covered
here. However, while these four storage classes define the semantics that are visible to
the programmer, as compiler writers we need to consider additional storage classes.For
example, a local variable and a formal function parameter both nominally have auto
storage class.However, when we generate target code, we need to distinguish between
these two conditions, because the way we access local variables in assembly language
will differ from parameters.We’l l see some more examples and issues in the unit on
target code generation.Another subtle but significant difference is that whileint i; and
extern int i; both nominally haveextern storage class, these two declarations do quite
different things with respect to the linker stage.We’l l revisit these issues in Unit 7.

Storage class can only be applied to declarations of a variable or function. As we shall
see in a later unit, all that a storage class does is determine how a variable is accessed at
run-time, and/or whether the associated symbol is made globally visible by the linker.
Therefore, it is meaningless, and not allowed by C, to attach a storage class to a structure,
union or enum definition (i.e. the definition of the tag with its members, as opposed to a
declaration of a variable of struct, union or enum type), to a typedef, to a label, or to a
structure or union member (their storage class is "inherited" from the structure or union in
which they appear).

When a storage class keyword is omitted in a function or variable declaration, a default
storage class may be imposed by the C standard. E.g. variables declared in a function or
block scope haveauto storage class.

The storage class is an attribute of a variable or function symbol, distinct from the type.
E.g.
static int a;

The type of a isint , notstatic int .

C-23 overloads theauto keyword for something which is not a storage class, and which,
in the author’s opinion, is a completely absurd and useless feature in C.

Type Systems

Almost all programming languages have type systems.Type systems are a way of
allowing programmer to express intent rather than mechanics. The compiler must keep
track of the types of variables, expressions, etc. in order to generate the proper code.

Enforcement of type rules catches certain types of programmer errors. Some languages
are very strongly typed, to the extent that they simply can’t do certain things which
violate their type model. Other languages such as C are more loosely typed: the compiler

ECE466:Compilers Unit4/pg 12 ©2025 Jeff Hakner

may complain, but the programmer can generally override type-safety decisions.

Programming languages can have both static and dynamic typing.C has only static.
Dynamic typing requires run-time support, e.g. inserting a tag into objects to encode
their type and cause the execution of the appropriate method.Interpreted languages
typically have greater support for dynamic typing.

Types in C

This is not intended to be a comprehensive reference on the C language, but merely to
illustrate the issues facing the writer of a compiler for C.The reader is referred to the C
language standard, the textbook, or Harbison & Steele.

Central to the C compiler’s operation is the ability to represent C language data types,
including potentially complicated types, and to manipulate and analyze these type
representations. Typically, an AST is used to represent types as they are constructed
within declarations or abstract type names (used in prototypes and casting). ASTs can
also be used to represent expressions. TheAST can be queried in a number of ways:
• Calculate thesizeof an expression or type
• Calculate the resultant type when an operator is applied to a subexpression or
subexpressions
• Generate code to calculate the value (rvalue) of an expression
• Generate code to calculate the lvalue of an expression. Thelvalue is a name or
expression that can be used to store a value.
• Generate code to calculate the run-time address of an expression

In the pages that follow, we will see how types can be represented with ASTs, and how
some of the above analysis can be performed. Some analyses, particularly those
involving code generation, will be covered in later units.

Scalar types

C defines certain basic, scalar arithmetic types: the integers and the reals. In C99, the
complex type is also defined. C23 adds the bool type (which is basically treated like a
char); in C99 _Bool was an optional feature.Integers consist of char, short, int, long and
long long sizes.Although commonly these are represented in 8, 16, 32, 32 and 64 bits,
the C standard does not require any particular number of bits for any giv en type. Infact,
the int type is specifically designed to be the "best" integer type for a certain target
architecture. Ona native 64-bit system this might be 64 bits, while at the other end of the
spectrum, it might be 16 bits for an embedded system.Integer types may be signed or
unsigned. Bydefault, all integer types are signed unless specifically made unsigned by
the unsigned keyword (or the appearance of aU suffix on an integer constant).An

ECE466:Compilers Unit4/pg 13 ©2025 Jeff Hakner

exception is made forchar , which the C standard says may be either signed or unsigned
(most implementations make it signed by default).

Note: Although I use the term "scalar types", the C23 standard now calls these "basic
types", and considers pointer types to also be scalars.

The C standard defines three levels of precision for non-integer arithmetic types: float,
double and long double.Again, the choice of representation and the exact precision is
implementation-specific. Inmost cases, IEEE-754 floating point format is used, and
floats are 32 bits long, doubles are 64 bits, and long doubles may be 80 or 128 bits (long
double was added in C99.) C99 complex types likewise can have float, double or long
double precision, and are in fact internally handled as a struct with a real and imaginary
component.

While the types of variables are explicitly declared, the compiler needs to know the types
of constants.They may be specified directly by the programmer using suffixes (e.g. UL,
LL), or the type can be inferred by the value and knowledge of the ranges of values
representable in each type. This is discussed further in the texts.

Thevoid type is a special scalar type which is used to indicate the absence of a value.

This fixed set of arithmetic types suggests that, within the compiler, a single 8-bit word
with bit fields could be used to represent them, or alternatively a bit-field struct. Many
years ago, when memory was scarce and compilers were very "heavy" programs, such
bit-packing tricks were essential.

Enum types

enum types are equivalent to ints in C. It is never an error to assign an int to an enum or
vice versa, and no range checking is required.Like structures and unions, enums are
defined once, possibly with an associated tag, and can be used later with a typedef name
or the wordenum followed by the tag.Unlike structure or union members, the identifiers
listed within the enum definition are not in an independent scope, but instead get placed
into the symbol table currently in scope. enum constant names are in "everything else"
name space and must be unique from variable, function and typedef names visible in the
same scope. The only moderately tricky thing for the compiler is to keep track, during an
enum definition, of the last integer value associated with the last constant name, so values
can automatically be assigned if not specified.

enums are not "first class types". If they were, assigning a value of typeenum apple to
enum orange would be a type mismatch error!enums are simply aliases for integers, and
this feature was not present in original C because almost all of the same functionality can
be accomplished with the preprocessor.

Type Qualifiers

ECE466:Compilers Unit4/pg 14 ©2025 Jeff Hakner

Type qualifiers were first introduced to the C language in ANSI C (C-89), with the
addition of the keywords const andvolatile . These qualifiers modify scalar, pointer,
array, struct or union types, and must be "carried around" by the compiler. C99 added a
new qualifier restrict which can only be applied to pointer types (and array types, but
only in prototypes).Qualifiers do not change the actual representation of a type, but they
do create compile-time restrictions on how a type can be used, and provide hints to the
compiler for optimization.

Composite Types

More complicated types are created from the basic scalar types by applying pointer, array
or function declarators, or by defining structs or unions with a member list.

Pointers

Within the compiler, a pointer type can be represented with an AST node indicating a
pointer, and then a pointer to the AST of the underlying type.Pointers can also have a
qualifier, e.g. int * const ip; declares a ponter which does not change, but which points
to an unqualified int (contrast w/const int *ip;).

C99 added therestrict qualifier which can only be applied to pointer types, or array
types used as formal parameters (which are really just pointer types).It is a promise from
the programmer to the compiler that that the memory location(s) referenced by the
pointer’s value will not be changed through some other pointer. This allows the compiler
to generate more optimal code based on dataflow analysis.

Arrays

An array type is slightly more complicated. The AST node must contain a pointer to the
element type of the array (the element type can not be a function, void, or a type of
unknown size), and there must be an indication of the array size (number of elements).
The size can be a specific constant expression known at compile-time, or it can be
unknown (e.g. formal parameter to a function or referencing an extern array). C99 adds
complexity by allowing for variable-length arrays and variably-modified array types.The
size of the array is then tied to a potentially arbitrary expression and is not known at
compile time.The compiler must insert run-time phantom statements to compute the size
of the array, allocate storage for it (when declaring an array variable of variable length),
and to perform proper pointer arithmetic.Variable-length arrays are not permitted for
extern or static storage class. The reason for this will become apparent when the typical
assembly language and linker directives for declaring such variables are covered in Unit
7. Thebinding or computation of a variable-length type happens at run-time at the point
when the declarator is encountered, and is then fixed for the lifetime of that type instance.

ECE466:Compilers Unit4/pg 15 ©2025 Jeff Hakner

Therefore:
f()
{

int x=5;
int a[x]; // similar to int *a=alloca(x*sizeof (int))
x=10;
printf("%d\n",sizeof a/sizeof (int));

}

gives the answer 5.

C99 allows for qualifiers within an array declarator, but only when used in a function
prototype, in which case the array type is automatically converted to a pointer type
anyway. The same qualifiers (const, volatile, restrict) are permitted as for pointer types.
C99 also introduced an odd syntax involving the keyword static . This is a hint to the
compiler about the size of an array to which the formal parameter is pointing.

Functions

A function type can be represented by an AST node which in turn points to an AST
representing return type (functions may return any type except "array of..." or
"function..."), and has a list of pointers to the types of the arguments. Thelatter is the
prototype for the function, and is optional to retain compatibility with classic C.
Therefore, the declaration
int f();

declares that f is a function which returns int and takes an unspecified argument list,
while
int f(void);

declares f specifically as taking no arguments.Note that C23 breaks 50 years of C code
and now forbids functions without a prototype. The syntax f() now is equivalent to f(void)

The compiler must also handle the presence of the variable argument list specifier...
which may appear at the end of the argument list only. Prior to C-23, such a variadic
function prototype must have at least one fixed argument (e.g.int printf(char
*format,...)) but C-23 allowsint f(...)

As previously mentioned, a function name may be redeclared, as long as the new and old
declarations are "compatible." Therefore
int f();
int f(int); // OK, first def has no protoype
int f(); // Still OK
int f(double); // Error

Both gcc and clang install all objects of type function at global scope, even if they are
actually declared in a function or block scope:
void g(void)
{

ECE466:Compilers Unit4/pg 16 ©2025 Jeff Hakner

{
int f(double);

f(1.0);
}

}
char *f(double); // Should be valid, but gives an error

This appears to contradict the standard.

Structures and unions

Structures and unions have two aspects. Adefinition of a new struct or union lists the
members, and is similar to a list of variable declarations which might appear within a
block. Eachdefinition introduces a new, distinct type. Once defined, that type can be
referencedto create variables of struct or union type, pointers to such, abstract type
names, etc. There are two mechanisms for doing this: either saying the reserved word
struct (or union) followed by the tag, or by using a typedef alias.These methods are
equivalent. Struct/uniondefinitions can appear within a declaration, abstract type name
or cast, and need not have a tag. However, if the definition has no tag and is not somehow
captured with a typedef, there is no way to get back at it later.

So, when the compiler encounters a struct or union definition, it must create a new
symbol table, which can only contain identifiers of the identifier classmember. I.e. other
identifier uses, such as variable name, function name, label, etc. can not be installed into
this mini-scope. Also note that structure, union and enum tags are not installed in this
mini-scope, but rather are placed in the nearest enclosing scope. The member mini-scope
will be exited at the closing brace of the struct/union definition, but the underlying
symbol table will not be destroyed. Theinternal representation of a struct/union type
includes this symbol table, and also some helpful information such as the size of the
struct/union and the tag (if any) which defines it.

struct or union definitions can be incomplete, i.e. there is no member list. This is
necessary for self-referential structures, e.g.:
struct leaf { /* etc. */ }; // Enclosing scope

{ / / d ef of structs rooted in this scope
struct leaf;

struct node {
struct leaf *leaf;
struct node *node;
struct foo { // Tag placed in block scope

int a;
} b ar;

};

struct leaf {
struct node *node;

ECE466:Compilers Unit4/pg 17 ©2025 Jeff Hakner

struct leaf *leaf;
struct leaf myself; // NOT VALID, INCOMPLETE TYPE

};

struct foo f1; // struct foo defined above
}

Incomplete struct/union types are a form of forward declaration, i.e. use before
definition. They can be used in any situation where it is not necessary to know
sizeof(type) . E.g. one can always declare a pointer to an incomplete struct/union type,
but it is nev er valid to declare an instance of the struct/union itself, whether a variable or a
struct/union member, when that type is incomplete. Nor would an array of incomplete
structs be valid.

The syntax shown above, with a struct tag and nothing else, e.g.struct leaf; is a
special construction. It tells the compiler to hide any pre-existing definition of that tag
(i.e. if struct leaf were visible outside of the outermost set of braces) and start a new,
incomplete definition. This construction does not work for enum.

The definition of a struct or union is considered complete after the closing brace of its
member list. Therefore, the membermyself above is not valid, because the definition of
struct leaf is not yet complete.The compiler must be able to determine the sizeof each
member, because it must allocate offsets. Variable-size arrays can not be structure
members. C99allows for one array of unspecified ([], not variable) size to be the last
member of a structure. This legitimizes a long-standing C programming trick of creating
variably sized structs which have a buffer at the end. Refer to the texts for more
information.

Installation of the struct/union type definition into the symbol table begins as soon as the
opening brace is seen. E.g.
1 s truct A {int a;}

2 f ()
3 {
4 s truct A {
5 s truct A *p;
6 i nt b;} A1;
7 A1.p= & A1;
8 A1.p->a = 1; //error: no such member a
9 }

At line 4, a new incomplete definition of struct A is begun in the scope of function f.At
line 5, this incomplete definition has hidden the definition from line 1, therefore the
member p refers to the definition begun online 4.

The "binding" of a particular struct or union type to its tag takes place once. E.g.
f()
{

struct A {int a;};

ECE466:Compilers Unit4/pg 18 ©2025 Jeff Hakner

struct B {struct A *ap;};
/*...*/
{

struct A {double z;};
struct B b; /* Contains a ptr to the struct A defined

in the scope of function f(), NOT
the instance of struct A in this block scope */

b.ap->a=0; /* Therefore this line works */
}

}

And likewise:

struct A {
struct B *bp; // Incomplete struct B in file scope

};

int f(void)
{

struct A a;
struct B *bp; // Binds to incomplete type in file scope
struct B {int x;}; // tag B defined in fn scope, doesn’t complete *bp
bp->x++; // ERROR: bp refers still to incomplete type
(a.bp)->x++; // ERROR: a.bp refers to incomplete type

}

Members of structs and unions can’t hav estorage classes, but they can have qualifiers,
because qualifiers are part of the type.Since only members can be declared within a
struct/union definition, use of a typedef is not permitted within the definition, nor can a
member be defined that has function type.Any nested struct, union or enum definitions
are placed in the nearest enclosing (file, function, block or prototype) scope.This is true
regardless of how deeply nested these definitions are.If this were not the case, they
would not be visible outside of the member list, and would be fairly useless. Here is an
odd example involving struct tags in prototypes:

int f(struct foo {int a;} *p)
{

struct foo q; //OK
q.a=1; //OK

}

struct foo z; //ERROR

int g()
{

struct foo {int a;} b;
f(&b); //UGLY, GIVES WARNING, STILL WORKS

}

The definition of structure tagfoo occurs inside of a prototype scope. Because the
declarator forf is a function definition, this prototype scope, in effect, gets "promoted" to

ECE466:Compilers Unit4/pg 19 ©2025 Jeff Hakner

a function scope. Another way of looking at it is that it was a function scope all along,
but in practical terms, it is not possible during parsing to determine whether a particular
function declarator is going to be merely a prototyped declaration of the function’s return
value and parameter list, or is going to be followed by a pair of braces giving the actual
function definition. Either way, the definition ofstruct foo is valid until the closing
brace of the functionf . It is not visible in file scope and thus the following line is an
error. In addition, there is no valid way to call function f with a matching prototype,
because the definition ofstruct foo disappears. Whileone could lay out another
structure with the exact same member list, it is still not the identical type.For this reason,
including a structure or union definition inside of a prototype is considered bad practice.
These peculiarities should illustrate that a compiler must be careful about the nesting of
scopes.

AST type representation vs parse tree

Below is a possible AST representation of the following code
static struct s1 {

int z;
struct s1 *self;

} * (*p[10])(int, double);

ECE466:Compilers Unit4/pg 20 ©2025 Jeff Hakner

STRUCT

MEMB

"s1"

"z"

SCALAR

intVAR
"p"

ARRAY
#=10

PTR FN PTR

SCALAR

SCALAR

int

double

global scope

stg:static

MEMB

"self"

PTR

One of the challenges in constructing this representation is the nature of the C declaration
syntax, which is "inside-out".A C declaration is of the form:
declaration:

declaration_specifiers declarator_list ’;’

The declaration_specifiers may contain simple type specifiers, such asint , typedef
names, or struct/union/enum references (possibly with an embedded definition).The
specifiers may also be modified by qualifiers (e.g. const, volatile) or storage class.

The declarator is a limited subset of the general C expression syntax, as described
previously ("Declarators and Abstract Declarators")

Unfortunately, the AST which would be built "naturally" by evaluating the declaration

ECE466:Compilers Unit4/pg 21 ©2025 Jeff Hakner

from the parse tree comes out wrong:

declaration

decl_specs declarator_list ’;’

declarator

pointer_declarator

’*’ declarator

func_declarator

declarator ’(’ prototype ’)’

etc.pointer_declarator

stgclass decl_specs_opt

type_spec

struct_definition

etc

IDENT

declarator ’[’ expr ’]’

array_declarator

declarator’*’

There are classically a number of different approaches for rectifying this when writing a
C compiler. One method is to allow the AST to be built "backwards", and then make a
second pass to reverse it. In the original C compilers, before function prototypes and
other ugliness mucked up the language, this was a straightforward approach.Any data
type could be represented as a list (in the first C compilers, it was implemented by a
fixed-length array, limiting to complexity of the data type to 16 levels) and the list could
be trivially reversed after parsing the declarator. In fact, the odd nature of C declarations
was based on being able to re-use the same (LL-driven, hand-crafted, top-down) parser
code for expressions and declarations!

ECE466:Compilers Unit4/pg 22 ©2025 Jeff Hakner

IDENT

ARY (10)

PTR

FN

PTR

STRUCT

struct definition

Type representation in very
old C compilers (before
function prototypes!)

Unfortunately the above approach is now obsolete. Functionprototypes and variable-
length arrays make types into a tree rather than a simple list.Prototypes also introduce
new scopes in the middle of processing a declarator. With suitable care, we could create
the type representation AST with hidden "reverse" pointers that allow us to get back to
the beginning (the identifier). Another method is to use, as the semantic value of the
rules involved in a declaration, a pair of AST node pointers, one of which tracks the
"deepest" node, the other which tracks the "top" frontier, and use these pointers to
construct the AST the correct way (this is illustrated below for a simpler declaration).

ECE466:Compilers Unit4/pg 23 ©2025 Jeff Hakner

IDENT

H T

IDENT ARRAY

size=3

H T

IDENT ARRAY

size=3

H T

PTR

VAR ARRAY

size=3

H T

PTR SCALAR

int

int *f[3];

INPUT

STEP 1: Reduce IDENT f as simple declarator

STEP 2: Reduce array declarator

STEP 3: Reduce pointer declarator

STEP 4: Reduce top−level declarationSymbol Table

IDENT node used as a placeholder

New symtab entry, old IDENT node discarded

We might be tempted to just install the identifier into the symbol table as soon as we see
it in the declarator, but this falls apart for two reasons. (1)We can’t allow the identifier to
become visible in the scope in which it is to be installed until theend of the overall
declarator in which it is mentioned.We’l l see some odd cases with typedefs below
which illustrate this timining quandry. (2) Although we could tack on the base type at the
end as we are about to reduce the top-level declarator (i.e. make the connection between
PTR and STRUCT in the complicated example above), the storage class is also
something that needs to get recognized, and its place is in the symbol table entry (the
storage class is NOT part of the type!)

Typedefs

The use of thetypedef keyword in a declaration causes any identifiers declared in that
declaration to be installed into the symbol table as typedef names. The typedef name can
then be used in a subsequent declaration, or abstract type name, and is completely

ECE466:Compilers Unit4/pg 24 ©2025 Jeff Hakner

identical to the original type.Typedefs can’t be done with simple macros substitution.
Consider:
typedef int (*apf[10])(int);

apf *papf;
#define APF int (*apf[10])(int)
APF *papf; // FAIL!

A storage class keyword can not appear in conjunction withtypedef keyword, because
typedef names do not have a storage class, nor do they capture a storage class for use
later.

Type qualifiers can appear in a typedef definition and they are recorded as part of the
type. Additionalqualifiers can be added when the typedef is used as a typedef reference
in a subsequent declaration.

Although one can create a typedef of type function, the "function-ness" inherent in that
typedef name can not be used to define a function. E.g.
typedef int ftd(void);

ftd *fp; //OK

ftd f //ERROR
{

/*...*/
}

In C-99, variable-length arrays introduce a new wrinkle. Thedimension of the array is
calculated at the time of the typedef, and remains static thereafter. The array dimension
is not recalculated when the typedef name is used to declare a variable.
int x=3;

main()
{
typedef int a[x];

{
x=5;
a ary;

printf("%d\n",sizeof ary); //prints 3*sizeof(int)
}

}

In theory, handling typedefs at the semantic level is easy. When a declaration is seen with
the typedef keyword in the declaration_specifiers, the identifier(s) is installed in the
symbol table of the current scope, but as a symbol type of TYPEDEF instead of
VARIABLE or FUNCTION. When that typedef identifier is later used as a type specifier
in the declaration_specifiers, the AST representation of the type that was captured
previously during the typedef definition then becomes part of the type of the function or

ECE466:Compilers Unit4/pg 25 ©2025 Jeff Hakner

variable being declared.Since the type captured in a typedef never changes, it is even
permissible to share that part of the AST:

TYPEDEF

"ipp"

Symtab
typedef int **ipp;

ipp ippa[10];

PTR PTR INT

VAR

"ippa"
ARY
10

Breaking the Lexer Abstraction Barrier

Unfortunately, the typedef mechanism is going to shatter the false sense of comfort that
we have gained with context-free grammars! In a theoretical world, the lexical analyzer
would stand alone, feeding a sequence of tokens as demanded to the parser, based on a
fixed set of lexical rules. However, consider this:
typedef int itd;
/*...*/
void f(void)
{

itd (x);
}

A human reading this code would hopefully recognize thatitd is a typedef name, and
therefore the line of code within the function f is a declaration of a variablex as typeint .
(the parentheses are redundant but are in this example to force the issue of ambiguity!)
However, if the lexer simply returns IDENT as the token class foritd , this syntax is
indistinguishable from a function call. While stylistically we would put whitespace in
between the declaration specifiers and the declarator list, and omit whitespace between
the function name and its arguments in an expression, this is not part of the grammar,

ECE466:Compilers Unit4/pg 26 ©2025 Jeff Hakner

because whitespace is ignored.

In other words, the grammar isnot context-free, and since after the opening brace either
a declaration or a statement (consisting of a function call expression) are both valid, we
would have a reduce-reduce conflict here.

That the use of an identifier as a type specifier would break context-freeness of the
grammar was understood at the time this feature was inserted into the C language
(mid-1980s). However, there was an easy "kluge:" when the lexer recognizes the pattern
for an IDENTIFIER, it reaches "up" into the semantic analysis part of the compiler and
asks the symbol table if that identifier is visible as a typedef name.If so, the lexer returns
a different token code, e.g.TYPEDEFNAME. This resolves the ambiguity above, but
we need a few more kluges to handle all of the cases. Consider this example:
typedef int itd;

g()
{

itd *itd;
}

Upon entry to the scope attached to function g, itd is a typedef name visible from global
scope. Thedeclaration will install a new symbol itd into the inner scope (function scope)
as a variable name. Because of the "timing rules" this installation doesn’t take place until
the end of the declarator in which the second instance of itd is mentioned, i.e. at the
semicolon. However, to be a valid declarator, that second instance must be sent up by the
lexer as IDENT, not TYPEDEFNAME, because TYPEDEFNAME ’*’ TYPEDEFNAME
’;’ is not a valid token sequence.With a simple secondary kluge, we can still work this
out: after seeing a TYPEDEFNAME, the lexer sets a flag stopping further translation of
IDENTs to TYPEDEFNAMEs. Theflag is reset by the parser via an embedded mid-rule
action just before the semicolon, so the lexer is ready for the next TYPEDEFNAME that
potentially begins the next declaration.

In K&R C, type names can only appear in the declaration_specifiers portion of a
declaration, therefore only once per declaration, so the simple approach above is
sufficient. WhenANSI C (C89) introduced function prototypes, things rapidly got ugly:
typedef int itd;

f1()
{

itd itd(itd ij, itd itd);
}

This mess declares itd to be, within the scope of f1, the name of a function which returns
int and takes two int arguments, which have been given the (useless) names ij and itd.To
clarify this, let us add suffixes to the ambiguous identifier showing the scope in which is
is being recognized and its class (T for typedefname, I for identifier).

ECE466:Compilers Unit4/pg 27 ©2025 Jeff Hakner

//scope0==global
typedef int itdT0;

f1()
{
//scope1==function
//scope2==prototype

itdT0 itdI1(itdT0 ijI2, itdT0 itdI2);
}

Note that itdI1 must be recognized as an identifier which is being declared.That
declaration will be rooted in scope 1, but the C standard says that a declaration doesn’t
take effect until the end of thedeclarator in which that identifier is mentioned.
Therefore, as we enter the prototype scope, itdT1 is not yet visible.Then itdT0 gives the
type of the first prototype parameter. itdI2 declares itd to be the name of the second
formal parameter, which will obscure the itdT0 declaration. Note that if we reverse the
order of the prototype parameter list, we get in trouble:

itdT0 itdI1(itdT0 itdI2,itdI2 ijI2);

because the declaration of itdI2 as the first parameter name obscures itdT0, and this takes
effect when the comma is seen, as that ends the declarator in which itdI2 is mentioned.
Then the second parameter declaration is invalid because itd is not recognized as a
typedef name.

If we turn OFF the IDENT->TYPEDEFNAME transformation in the lexer as soon as it
performs an instance of this transformation, we must turn it back ON again upon reaching
the end of a complete declarator, or the opening parenthesis of the parameter type list of a
function declarator. We must turn it OFF again after the closing) of the function
declarator.

Even this approach is not 100% foolproof. The C standard discusses cases which are
truly ambiguous and gives an arbitrary way of resolving the ambiguity. At one point, the
GCC compiler had to use the GLR parsing mode to deal with these rules, which no
longer could be handled with the old "lexer feedback" kluge.With the GLR approach,
the TYPEDEFNAME fake token isn’t used, and typedef names are lex’d as IDENT.
IDENT is allowed to be a type_specifier. This results in a reduce-reduce conflict, and the
GLR parser "splits", trying both possible parse trees.A semantic value tie-breaking rule
(see the Bison documentation) is then used to determine which of the two possible parses
is the correct one.However, about 10 years ago, the rules for C, and especially C++,
became so obnoxious, that GCC went back to a hand-coded parser. That’s right, GNU
stopped using its own GNU product, in its parser! CLANG takes the same hand-coded
approach.

Had enough yet? Here is another example, this time using abstract type names, which
can’t be solved using the "lexer kluge" approach:
typedef int itd;

f4()

ECE466:Compilers Unit4/pg 28 ©2025 Jeff Hakner

{
itd ff(itd (itd));

}

Here ff is being declared as a function.The return type of ff is int. That much is
perfectly clear. The argument which ff takes is ambiguous. It could be another function.
Now, you may ask: How can a function take a function? Inreality, any argument of
function or array type is actually passed as a pointer. But C89 and later allow the [] or ()
notation in prototypes as a syntactic convenience. Sothis could be equivalent to:
int ff(int _DUMMY(int))

ff takes one argument which is a (pointer to a) function returning int and taking one int.
But it could also be equivalent to:
int ff(int itd)

i.e., ff takes one integer argument which we give the (useless) name itd and surround with
redundant parentheses.Section 6.7.5.3 of the C99 standard, item #11, states that if in a
parameter declaration the identifier could be either a typedef name or a parameter name,
it must be recognized as a typedef name, so the first interpretation is correct.

But wait, there’s more!
typedef int t;

struct s {
unsigned t:4; //bit field named t is unsigned int
const t:5; //unnamed bit field of type t

};

Within the structure definition above, which uses the bit field syntax, the first occurrence
of the identifier t declares a structure member named t.t can’t be a typedef name, since
unsigned can not modify a typedef name (andunsigned by itself is a valid type name
which is the same asunsigned int). But in the next line,t is a typedef name, which is
qualified by const, and the declarator is :5, an anonymous bit field of width 5.Again,
stylistically whitespace should appear between t and :, but this is not relevant. Thefirst
instance of t does not obscure the typedef declaration t (from global scope), because
structure members are not in the same namespace class as typedef names.

If these typedef examples seem insane, it should be taken as a lesson in programming
language "creep."Many programming languages, such as C, start out simple, elegant,
and suitable for the purpose for which they were designed. As time goes by, efforts to
"improve" the language result in new syntax. Often,complicated interactions among
these added features, and the original structure of the language, can lead to difficult
situations which were not anticipated as each new feature was added. Had the typedef
mechanism originally been added to the language by creating two new keywords, let us
say typedef to create the typedef name, andtyperef to use it, in the same manner as
struct/union tags, then the context-free nature of the grammar would not have been
broken. However, this approach was rejected at the time because it was desired to have
typedefs appear to be "first class" types which could be used in the manner as built-in
types such asint . In retrospect this concern was a misplaced aesthetic.Types created by

ECE466:Compilers Unit4/pg 29 ©2025 Jeff Hakner

typedefs are not first-class, since array types can not be made assignable by this
mechanism.

Type Algebra

We will now consider how types interact with expression operators.We can view these
rules as a sort of type algebra, and we can systematically code routines to evaluate these
rules, using the AST representation of types.

Type Equivalence and Compatibility

The C standard uses the term "compatible types" in a slightly confusing way. Two types
are compatible if they are identical, or if they are "close enough" to be equivalent. This
concept is used whenever two types interact with each other, e.g. in assignment.When
two non-identical types are compatible, the result is acomposite typewhich represents a
compromise, of sorts, between the two types. Determinationof type compatibility for
complicated types can be performed recursively, using simple rules:

Arithmetic types are compatible only if they are the same type. long is not compatible
with short. signed int is not compatible with unsigned int.Type qualifiers also break
compatibility: const int is not compatible with int.

Each enum definition is a distinct type and is not compatible with other enum types.
However, any enum type is compatible with int, and the result is that enum type.
Furthermore, since enums generally get converted to ints in any expression, this is rarely
an issue.

Tw o array types are compatible if their element types are compatible, and if their sizes
are compatible too. The latter is defined as follows: if both array types define a specific
size, they must be equal.However, if either or both sizes are not defined, they are
compatible. Thecomposite of the two array types has an element type which is the
composite of the two element types. If either type defined a size, the composite has that
defined size. In C99, the array types can be qualified and if so the qualifiers must match.
extern int a[]; // But note int a[]; w/o extern is not valid!
extern int a[10];

main()
{

printf("%d \n",sizeof a); // 10*sizeof(int)
}

The redeclaration ofa is permitted if both areextern AND if the declared types are
"compatible." Thearray of unknown size is compatible with the array of specified size
(and their base types are compatible, in fact identical). The composite type is the array of
known size (10 elements) therefore sizeof(a) is defined and is 10*sizeof(int).

ECE466:Compilers Unit4/pg 30 ©2025 Jeff Hakner

Tw o function types are compatible if their return types are compatible, and furthermore
their argument lists must be compatible.The latter introduces some complicated rules for
mixing prototype and non-prototype forms of function type specifiers. The reader is
referred to the C standard. If both function types are in prototype form, the number of
arguments must be equal, the use of variable arguments must be the same, and each of the
arguments’ types must be compatible.

Each structure or union definition creates a distinct type which is not compatible with
anything else. It is the tag, or a typedef alias, which captures this. Thus:
struct {int a;int b;} x;
struct {int a; int b;} y;

the types of x and y are not compatible, even though the elements are declared the same
way. Of course, when C programs are compiled from separate source files, the compiler’s
type checking systems are bypassed.If x and y above were in separate .c files, it is
important that the code work as intended. The C standard guarantees that the compiler
will always lay out structure and union types in a consistent way, so the members will
always be in consistent places.

Tw o pointer types are compatible if their pointed-to types are compatible. The composite
type is a pointer to the composite of the pointed-to types.Pointers may be qualified (e.g.
a const pointer to an int, as opposed to a pointer to a const int) and if so those qualifiers
must agree exactly for compatibility to hold.

Conversions

Values of a certain type can be converted to another type in several ways:
• An explicit cast expression
• Implicit conversions which happen to the arguments of many operators (unary, binary
and assignment conversions)
• The conversion of array and function types to pointer types in most expressions
• Implicit conversions of actual arguments to a function call
• Implicit conversion of return value from function (as if by assignment)
• An area of memory which contains a value of one type is viewed as being of a different
type, either by mistake or on purpose.

Conversions between integer types do not involve any change to the actual bit values, as
long as the types are the same size.E.g. theexpression

a=(unsigned int)b;

where b was defined as just int, does nothing different from simplya=b. When the
destination type is smaller than the source, the higher-order bits are discarded. This may
create a loss of information if the source value was outside of the smaller range of the
destination. Whenthe destination is wider than the source, the higher-order bits are filled
with 0 if the source is unsigned, but if the source is signed, the most significant bit (the

ECE466:Compilers Unit4/pg 31 ©2025 Jeff Hakner

sign bit) of the source is extended to fill the higher-order bits. Most processors have an
instruction to do this automatically.

Conversion of a floating point type to an integer results in truncation of the fractional
portion (not rounding!). E.g. 3.5 becomes 3 and -1.7 becomes -1. The floating point
source may exceed the range of the integer destination (e.g. 1e+20 can be represented in a
32-bit float, but not a 32-bit int) and the results are then undefined.Conversion of an
integer type to floating point generally works out, but it is possible that the floating point
type is not precise enough to represent the integer exactly. A 32-bit float can hold the
entire range of a 64-bit long long (2**64 is approximately 16e+18),but the
significand/mantissa is not large enough to hold it exactly (a float has 23 bits of precision
and a double has 53. It would take a long double to hold the entire range of a long long
int with no loss of precision). Similar rules hold for conversions between floating types
of different size.

Pointers may be converted to integers and vice-versa. Itis not guaranteed that a memory
address (pointer) will fit into an int, or even a long. E.g.the model might be that ints and
longs are 32 bits, but addresses are 64.However, in almost all cases, there is some
integer type which can hold the pointer (long long in the previous example). Pointersand
integers are not "compatible types", though, so implicit conversions between them
generate a warning, but explicit casts are OK.An exception is made for the constant 0,
which can always be implicitly converted to any pointer type because it is the NULL
pointer.

C23 introduces anullptr_t type, to fix some problem that existed only in the minds of
standards writers. Refer to the C23 standard for the obtuse rules regarding this type.

Pointers to different types may generally be converted without any actual changing of
bits. De-referencinga pointer of one type as another type may produce undefined results,
e.g.
f()
{
int a;
float *fp;

a=1;
fp=(float *)&a;
printf("%g\n",*fp);

}

The printf %g above is an example of the last category of conversions mentioned
previously, where a given bit pattern in memory is viewed as another type. The result
will be garbage. Additionalcomplexity is introduced on architectures which impose
alignment restrictions on certain operations.In the following example, the de-referencing
of the pointer may result in a run-time fatal error because the value of buffer is not
necessarily aligned to a 4-byte boundary.
g (c h a r * b u f f e r)

{

l o n g * l p ;

ECE466:Compilers Unit4/pg 32 ©2025 Jeff Hakner

l p = (l o n g *) b u f f e r ;

p r i n t f (" % d 0 , * l p) ;

}

The C standard imposes an additional restriction that a pointer to a function can not be
converted to a pointer to a variable or vice-versa. Thisis because on some architectures,
function and variable pointers may have vastly different representations (e.g. a PIC
microcontroller). However, a function pointer can still be converted to an integer, and
that integer converted to a variable pointer, so the reasoning behind this restriction is
dubious. GCCand Clang don’t seem to care about this restriction at all.

Casts

A type cast expression is used to force an explicit conversion from one type to another.
Arithmetic types can be freely cast among each other. Pointers can be cast to and from
integer types. Pointers to one type can be cast to pointers to another type, including
pointers to void, except that restrictions are imposed to prevent casting between function
and variable pointers (but this can be circumvented by casting through an integer type).
Casting any type to void means discarding its value. structures,unions, arrays and
functions can not be cast.Type qualifiers can also be cast away.

Function/Array Pointer Equi valence

An expression of type array of E is converted to a pointer to E in every context except:
• When the array is the argument to the & (address-of) operator
• When the array is the argument to the sizeof operator
• When a string literal (which is really an array of char) is used as an initializer.

This conversion could be stated in another way: in most contexts, the name of an array is
really the address of its first element. The reason for this is that arrays are not "first class
types" but are really a syntactic convenience to hide pointer arithmetic. The C
implementation of arrays makes perfect sense to assembly language programmers, but is
confusing to just about everyone else.

An expression of type function is converted to a pointer to function in every context
except as the operand to the & or sizeof operators (furthermore it is invalid to apply
sizeof to a function name).One could also say that this conversion does not take place
when the function name is used to call the function, or one could say the conversion
happens and that’s OK because a function can be called with a pointer to a function too.
Again, another way of saying all this is that a function name is really the address of its
first machine-language instruction.

The "shielding" effect of sizeof and & extends only to the expression which is the
immediate operand of the operator. It does not recurse to deeper levels of the expression

ECE466:Compilers Unit4/pg 33 ©2025 Jeff Hakner

or the type.

Let us examine some cases:
main()
{
int a[7];

printf("%d %d\n",sizeof a,sizeof(a+0));
}

The variable a has type array(7,int).In the first case, a is the direct operand of sizeof, and
thus its type is not converted to a pointer. sizeof(int [7]) is 7*sizeof(int), or 28 on a 32-bit
architecture. Inthe second case, a appears as the operand of the + operator. Its type is
therefore converted to pointer(int). As we’ll see later in this unit, when the addition
operator has operands of types pointer and int, the result is the pointer type.Therefore
the second printf output is sizeof(int *), or 4 on a 32-bit architecture.

We can visualize the way a compiler could perform this "type algebra" using an AST.
The solid portions represent the AST as constructed from the two parsed sizeof
expressions. Whenit comes time to evaluate thevalue of sizeof , the compiler must
determine the actual type of its operand.It can do so by recursively exploring the AST,
applying various rules.

ECE466:Compilers Unit4/pg 34 ©2025 Jeff Hakner

SIZEOF

SIZEOF

VARIABLE

"a"

ARY

7

int

NUM

0

+

PTR

typeof
sizeof operand typeof

+ operand
becomes PTR
to int

(remains ARY
because conversion
not applied
to sizeof operand)

typeof + operator when
operands are PTR/INT is
the PTR type.

The type of the expression&a would be pointer(array(7,int)), not pointer(pointer(int)),
because a, as the operand to the address-of operator, does not get converted. Thisis
important for multi-dimensional array pointer arithmetic:
int b[8][10];
int c[4][5][6];
main()
{

printf("%p %p %p %p\n",b,&b+1,b+1,*b+1);
printf("%p %p\n",c,*c+1);

}

The type of variable b is array(8,array(10,int)).Consider the four uses of b in the printf.
In the first case, b is subject to conversion, and the outer array type becomes

ECE466:Compilers Unit4/pg 35 ©2025 Jeff Hakner

pointer(array(10,int)). To analyze the next use, recall (or read ahead to learn) that the
expression p+i, with operands i and p of type integer and pointer(T), respectively,
computes p+i*sizeof(T). In the expression &b, the variable b is not subject to type
conversion as the operand of the address-of operator. Therefore it has a type of
pointer(array(8,array(10,int)), and the value computed is 8*10*sizeof(int)*1 greater than
the base address of b. In other words, it correctly computes the address of the "next" int
[8][10] array beyond b.

In the third case, b’s type does get converted to pointer(array(10,int)), and the expression
value is 10*sizeof(int) beyond the base address, i.e.the address of the second row of the
array b.

In the fourth case, b’s type is converted to pointer(array(10,int)), and is the operand of the
dereference (*) operator, which takes operands of type pointer(T) and results in a type T.
Therefore the subexpression *b has type array(10,int).BUT, this subexpression which is
an operand to + is also subject to array-pointer conversion, and therefore the operands to
+ are of type int and pointer(int), and the address is incremented by just one element.

In the second printf, c is of type array(4,array(5,array(6,int))).c is converted to
pointer(array(5,array(6,int)). Afterthe * operator the type is array(5,array(6,int)). This is
now subject to conversion again, but note that only the outermost array type is affected,
and the type becomes pointer(array(6,int)). The address is incremented by 6*sizeof(int).

Array/pointer conversion does not take place when a string literal is used to initialize an
array variable
char a[]="hello";
char *p="goodbye";

The array dimension of a is unspecified, but because of the initializer, the type of a is
(char [6]), allowing an extra byte for the NUL terminator. In the second example, the
string does not initialize an array variable, and is promoted to a pointer. In K&R C, an
initialized array declaration was allowed only when the variable has extern or static
storage class, but C-89 and C-99 allow the initialization in all cases. This leads to some
unfortunate inconsistency:
f()
{

char a[]="allowed";
char b[8];

b="denied";
}

Both a and b are variables ofauto storage class. The initialization of a requires the
compiler to generate code similar to:
char a[8];strcpy(a,"allowed");

But if we miss the opportunity to initialize the array during declaration, that opportunity
is lost forever! The string "denied" is promoted to (char *), and the variable b is also
promoted, but since array names are never lvalues, the assignment is an error. In other
words, while initialized declarations seem to be similar to a declaration followed by an

ECE466:Compilers Unit4/pg 36 ©2025 Jeff Hakner

assignment, they are not totally equivalent! This will become even more evident with
respect to global variables when we explore target code generation and the linker model.

Expressions and Types

We’l l conclude the unit by looking at each operator in the C expression grammar, with an
eye tow ard how the expression affects the type "algebra."Don’t worry, we’ll be
revisiting expressions again in Unit 5, when we need to talk about code generation for
each operator.

Before we delve further, let’s look at some issues that are common to many operators.

Lvalues

The termlvalue is used frequently in the C standard, and often with a very confusing
definition. Anvalue in an expression is said to "be" an lvalue if we can assign to it.In
other words, the "l" stands for "left" and we are concerned with whether it can appear on
the left side of an assignment. In the next unit, we’ll talk about "finding the lvalue" of a
subexpression, which means determining where or how we assign to it.

Side-effects

An expression is said to produceside-effectsif it could possibly modify the value of
some object somewhere, i.e. includes ++ or -- operators, assignment operators or function
calls. If an expression statement produces no side-effects, such as1+2; then a warning
may be generated unless the expression value is explicitly cast to(void) .

Unary and Binary Arithmetic promotions/conversions

The int type is defined as the "natural" register size for a given architecture. Onboth
X86-32 and X86-64, the int is 32 bits long.But there have been other architectures
where int is 16 bits, and on some pure 64-bit architectures, ints will be 64.

Integer arithmetic operations are "naturally" performed in assembly language using this
int size. Adding two chars together as an 8 bit operation isn’t any faster or cheaper than
doing it at 32-bit precision, because the ALU and the registers are 32 bits anyway. In an
expression, values of integer type smaller than int (short, char) are implicitlypromoted
to int. This reduces the complexity of the code which the compiler must generate for
expressions.

One thing which ANSI C "broke" involves promotions of unsigned short and unsigned
char. In K&R C, these were promoted to unsigned int, but in Standard C, they are

ECE466:Compilers Unit4/pg 37 ©2025 Jeff Hakner

promoted to int, as long as int is strictly wider than the original type and can thus
represent the entire range.The problem with this is that the expression then loses its
unsignedness, which can sometimes be a problem.

K&R C promoted floats to doubles, but ANSI C doesn’t require this. Unlike integer
operations, it is quite likely that single-precision floating point operators are indeed faster
than double, so if the programmer isn’t asking for the additional precision, why do it?

When a binary operator is presented with two subexpressions of differing types, one of
them must be promoted before the operation makes sense. So, after performing the unary
promotions described above, if the types are still different, the "lesser" type is promoted.
E.g. whenadding a double to an int, the int is promoted to double, the operation is
conducted as a double, and the result is of type double.Adding an int to a long long
results in promotion to long long.

The rules of binary promotions are somewhat complicated.(unsigned int) OP (signed
int) results in (unsigned int).But (unsigned int) OP (signed long) results in (signed long)
because the latter is a "bigger" or "higher ranking" integer type. This behavior also
changed from K&R to ISO C or C99.Many C programmers do not fully understand the
promotion rules. If uncertain, it is best to use explicit casts.

In classic C without prototypes, the actual types of the arguments are not known when the
compiler sees the function call.To simplify argument marshalling, classic C promotes
floats to doubles, and promotes char and short as described above. In Standard C, with a
prototype in effect, these promotions are not required to be performed.This is a good
optimization for floats, as discussed above, but not so important for integer types. In fact,
most implementations will promote char and short arguments anyway. If the function has
a prototype that specifies variadic arguments, those arguments must always be promoted
because their type is not known.

Primary Expressions (Level 16)

• IDENT: if the name of a variable, this is an lvalue, unless the variable is of array type, in
which case the expression is converted to a pointer to the element type and is not an
lvalue. Thisconversion doesn’t happen if this primary expression is the operand of a
sizeof or & operator. Technically, a variable of array type is an lvalue (it has storage
associated with it and we can take its address), but because of this default conversion to a
pointer type, this distinction really doesn’t matter.

The name of a function is also converted to a pointer to a function except when applied to
sizeof or &. Again, this distinction is a hair-splitter, since sizeof a function is not valid,
and there is no reason to use & on a function name other than style.

If the identifier is the name of an enum constant, then this expression has the value of that
constant, and an integer type of the compiler’s choosing (generally just int). C23 allows

ECE466:Compilers Unit4/pg 38 ©2025 Jeff Hakner

the specific integer type to be chosen, but enums are still ints. enum constants can’t be
lvalues.

Other uses of an identifier (tags, members, labels, typedef names) are not a primary
expression.
• literal: Integer, floating-point, character and string literals are all primary expressions.
Their type is inferred from their lexical pattern, including possible modifiers such asUL,
and (in the case of integers) by their value in relation to the range of values representable
by each scalar type. string literals are of type array of char, but they are converted to
pointer to char in all cases except as the operand to a sizeof, operand to &, or when being
used to initialize an array of char. It is implementation-specific whether a string literal
can be modified.
char *s="ABC";s[0]=’X’; // Produces a SIGSEGV on most UNIX implementations

In the example above, the compiler does not flag an error, but at run-time a fatal
exception is raised (SIGSEGV), at least on most UNIX implementations, because they
place string literals into the read-only program text.
• (e xpr) : Parentheses do nothing, the value and type is that of the enclosed
expression. They are used for style or to escape the normal precedence and associativity
rules. Typically in building an AST for an expression, one would not even bother with an
explicit AST node to represent parentheses.

Postfix expressions (also Level 16)

• e1[e2] : An array subscripting expression is defined asexactly equivalent to *(e1+e2) .
Since addition is commutative, this imples thate2[e1] is also equivalent, although that
would be stylistically strange. e1 must be a pointer type, and e2 must be an integer type,
or vice-versa. Asa result of the implicit binary + operator, the usual binary promotions
and conversions are applied to e1 and e2. See discussion of the + operator and pointer
arithmetic. If the pointer type is "pointer to T", the result of the subscript expression is
type "T". The result is always an lvalue.
• e1.IDENT : e1 must be of struct or union type and the definition of that type must be
complete. IDENTmust be a member within that type.The result is of the type of the
member. If either the member or e1 have qualifiers, the result type is the inclusive-or of
those qualifiers. The result is an lvalue iff e1 is an lvalue (struct and unions returned by a
function are not lvalues).
• e1->IDENT : This is exactly equivalent to(*e1).IDENT .
• Function Call: The type of the expression appearing to the left of the parentheses which
surround the (possibly empty) actual argument list must be "pointer to function...".Since
an expression of function type gets converted to a pointer to a function, this works as
intended. Italso means that given a function pointer, it is not necessary to use* explicitly
to call the function, although it is usually good style to do so.The arguments are
converted as if by assignment to the types specified in the prototype, but arguments in the
variable portion of the prototype are subject to the usual promotions discussed above, as

ECE466:Compilers Unit4/pg 39 ©2025 Jeff Hakner

are any arguments of a function called without a prototype visible. Calling a function
using an undefined symbol F results in implicit declaration of that symbol as int F(), as
discussed in an earlier section.(This usage is deprecated by C23) The result type of a
function call expression is the return type of the function, and is never an lvalue.
• e++: e must be a modifiable lvalue of integer, enum, real or pointer type. The effect of
this expression is similar to(temp=e,e+=1,temp) , with the important proviso that the
expression e is only evaluated once.e is subjected to the binary conversions because of
the increment, and the assignment conversions when storing the result back in e.The
result type is the type of e (before any conversions) and is never an lvalue. E.g.
char c; printf("%d",sizeof(c++));

prints 1, because the result type is char, not int, even though the increment occurs in the
int type.

e-- : see above
• Compound literals: C99 introduces a way to create a literal of any aggregate type
including struct, union or array. This is actually somewhat handy. The syntax is
documented in the C standard and Harbison & Steele. The result is an lvalue and is
modifiable unless a const qualifier is used.Compound literals are approximately
equivalent to having declared a variable of the same type with an initializer and then
forgetting the name of that variable after it is used in an expression.

Unary Expressions (Level 15)

• sizeof (type_name) andsizeof expr : The sizeof operator returns the size, in bytes,
of the given expression or of the given type name. The return type issize_t , which is a
typedef defined instddef.h . This type is an integer large enough to represent the largest
possible object. On 64-bit architectures,size_t is going to be along long , At one time,
the thought of a single array exceeding 2GB was somewhat scary, but today might be
seen in large applications.size_t is not a new scalar type, and its correspondence to an
actual type such asint is something which is fixed into the compiler when the compiler
is built for a specific target architecture. The result of sizeof is never an lvalue. Aswith
casts, the type_name could include struct, union or enum definitions which could be
referenced later as long as a tag was given, but this is considered poor style.If expr is
given, it must be a valid expression, but it is NOT evaluated (but see below about
variable-length arrays).The usual conversions do not apply to the top-level operand, but
they do to any inner expressions:
char c;
int i1,i2;

i1=sizeof(c); // parens redundant
i2=sizeof(c+1); // parens needed for order of ops

i1 has the value 1, but i2 has the value 4, because c is promoted. Note that parentheses
are not required when theexpr form is used. However, many programmers have
difficulty remembering all 16 precedence levels and use them for clarity. It is an error to

ECE466:Compilers Unit4/pg 40 ©2025 Jeff Hakner

apply sizeof to an expression or type name with an incomplete type. Before C99, the
value of sizeof was truly constant and known at compile-time. When C99 variably-
modified abstract array types are used with sizeof, the length control expression will be
evaluated:
main()
{
int i,j;

i=1;
j=sizeof(char [i++]); //side-effect in control expression!
printf("i=%d j=%d\n",i,j); //i is 2, j is 1

}

However, this example:
main()
{

int i;
i=1;
char a[i++];
printf("%d %d\n",sizeof(a),i);
printf("%d %d\n",sizeof(a),i);
printf("%d %d\n",sizeof(a),i);

}

gives inconsistent results depending on compiler version. Itshould print1 2 each time,
because the size control expression should only be evaluated once, when the variable is
declared. Butthe C standard is unclear on this. It says that the operand of sizeof is not
evaluated,unlessit is of a variable length array type. Modern versions of GCC and
CLANG do not increment the variable i three additional times.They implement VLAs
like this:
{

// What you said:
char a[i+j+k++];
// What it did:
size_t __hidden= i+j+k++;
char *a=alloca(__hidden);
// And therefore, when we see sizeof(a), we substitute __hidden

}

Aren’t variable-length arrays a wonderful feature?!

sizeof(void) is defined as 1, because a(void *) is the basic "pointer to memory"
(whereas in classic C it was a(char *)) and pointer arithmetic has to work. Butthevoid
data type can’t be the base type of an array, a struct/union member, or a
variable/parameter.
• +e
-e : Unary plus and unary negation require an operand of any arithmetic type. The result
has the same type as the operand (after unary promotions) and is never an lvalue. The
usual unary promotions are applied to the operand.One could debate the utility of the

ECE466:Compilers Unit4/pg 41 ©2025 Jeff Hakner

unary + operator and indeed it did not exist in classic C.
• !e : Logical NOT performs the usual unary promotions and isidentical to (e)==0 .
Therefore the result is of type int, and the operand may be any arithmetic or pointer type.
The result is never an lvalue.
• ẽ : Bitwise NOT requires an operand of integral type. The usual unary promotions are
performed. Theresult is of the (possibly promoted) type of the operand and is never an
lvalue.
• &e: The operand must either be an lvalue or a function or array type. If the operand is of
type T, the result is of type pointer to T. The usual conversions and promotions are not
applied to the top-level operand. Notethat if variable a is of type array of T, taking &a
yields type "pointer to array of T" but just the identifiera is "pointer to T." This does
make a difference when it comes to pointer arithmetic. It is invalid to apply the address-of
operator to a variable of register storage class, although many compilers will allow it with
a warning. Applying& to a function is somewhat superfluous since function types are
normally converted to pointers anyway.
• *e : The operand must be of type pointer to T, and the result is of type T. The result is an
lvalue unless T is a function or array type.The usual unary conversions are applied to the
operand. Ifa is an array type,*a is equivalent toa[0] .
• --e
++e: These pre-increment and pre-decrement operators require a modifiable lvalue
operand and their result is never an lvalue. They are equivalent toe-=1 ande+=1.

Casts (Level 14)

(type_name) e : An explicit cast conversion, as previously described.type_name is an
abstract declaration, which has the same syntax as a regular declaration but omits the
identifier which would normally be declared. Abstract declarations may contain
qualifiers such as const, but they can not include storage class specifiers, or thetypedef
keyword.

The result of a cast is never an lvalue and has the typetype_name . Casts are listed at
precedence 14, while all other Unary Expressions are at 15. This resolves a potential
parsing ambiguity:
sizeof(int)*p

is NOT sizeof ((int)*p))
it IS (sizeof(int))*p

Whentype_namecontains a variably-modified array type (C99 and later), the size control
expression is evaluated at run time:

ECE466:Compilers Unit4/pg 42 ©2025 Jeff Hakner

main()
{

int i=0;
int j;
void *p;

p=(char (*)[i++]) j;
p=(char (*)[i++]) j;
p=(char (*)[i++]) j;
printf("%d\n",i); /* Prints 3 */

}

Multiplicati ve expressions (Level 13)

• e1 * e2
• e1 / e 2
• e1 % e2: Each operand must be of arithmetic type. The unary promotion conversions
are performed on e1 and e2 to widen integers small than int, then the binary conversions
are performed to promote e1 or e2 to the greater common type if they are not already the
same type. The result is of this type and is never an lvalue.

Additi ve expressions (Level 12)

• e1 + e2
• e1 - e2 : The same unary and binary conversions are applied as discussed for
multiplicative operators immediately above. The operands may both be arithmetic types,
or one operand may be of pointer type (it can not be a pointer to a function, a pointer to
void, or a pointer to anything else whose size is not known) and the other of integer type.
In the latter case,pointer arithmeticis performed.Let us say e1 is the pointer type and e2
is the integer type.For addition, the actual value of the pointer, which is a memory
address, is incremented bye2*sizeof(*e1) . For subtraction, it is decremented.The
resulting type is the pointer type.

For subtraction only, BOTH operands may be pointers to the same (or compatible) types.
Then the resulting memory address is(e1-e2)/sizeof(*e1) . This is not exactly how the
standard defines it, but it is how the compiler will probably implement it.If either pointer
is not really pointing at an object of the appropriate type, the results are not defined.The
result type of subtracting two pointers is of typeptrdiff_t , which is going to be an
integer type large enough to hold any memory address. As withsize_t , ptrdiff_t is an
architecture-specific typedef (to some kind of int type) The result of an additive
expression is never an lvalue.

If e1 or e2 is of an enum type, the truth is they are really some kind of integer. enums in
C aren’t first-class types:

ECE466:Compilers Unit4/pg 43 ©2025 Jeff Hakner

enum junk {
peter=1,cooper=3,hewitt=5

} e e;

main()
{

ee=peter;
ee++;
printf("%d\n",ee);

}

If they were, incrementing peter by 1 should result in cooper, right?

Shift expressions (Level 11)

• e1 << e2
• e1 >> e2 : Each operand must have integer type and the unary promotions are applied to
each separately. There is no need to perform binary conversions to promote the operands
to a common type. The result type is never an lvalue and is of the (possibly converted)
type of the left operand.Results are undefined if e2 is negative. The actual operation is
different depending on whether e1 is signed or unsigned.

Relational expressions (Level 10)

• e1 < e2
• e1 > e2
• e1 <= e2
• e1 >= e2 : The operands must be integer or real types, or pointers to the same or
compatible types. The binary conversions are applied. The result is an int which is either
0 or 1 and is never an lvalue. For comparisons between integers, signedness matters, as
we shall see when we study the assembly language which must be emitted.Some
compilers will catch an error such asif (ui<0) whereui is an unsigned int. The C
standard explains rules for comparisons between pointers which are somewhat
theoretical. Inmost architectures, the pointers are compared as if they were unsigned
integers of the appropriate width.

Equality expressions (Level 9)

• e1 == e2
• e1 != e2 : The usual binary conversions are performed on the operands, which may be
of any arithmetic type, or pointers to same/compatible types. Pointers of any type may
always be compared against a void *, or against the constant 0. structs and unions can
not be compared, although they can be assigned. (The reason is that because of padding
issues (to be covered in a later unit) two structures or unions may have identical member

ECE466:Compilers Unit4/pg 44 ©2025 Jeff Hakner

values, but their memory images may differ in the padding regions.) Theresult of an
equality expression is an int which is either 0 or 1 and is never an lvalue.

Bitwise expressions (Levels 8, 7, 6)

• e1 & e2
• e1 ̂ e2
• e1 | e2 : These are listed in decreasing order of precedence. The usual binary
conversions are applied to the operands, which must be of integer type.The result is not
an lvalue. Inthe author’s opinion, the bitwise operators should have been placed above
the relational and equality operators.Consider:if (i&0x0F==3) , this compares 0x0F to 3
and then bitwise AND’s the resulting 1 or 0 with the integer i.This is almost never what
is desired! Unfortunately it would be a little late and cause a lot of confusion to change it
now.

Logical expressions (Levels 5, 4)

• e1 && e2
• e1 || e2 : The && operator has higher precedence. These operators are sometimes
called "short-circuit" operators because it is possible that e2 will not be evaluated if the
result can be determined solely from e1 (i.e. e1 is zero for && or non-zero for ||).This is
put to good use with C idioms such as
char *p;
/*...*/
if (p && p[0]!=’A’)

The operands to && and || are each subject to the usual unary promotions (not binary
promotions!) andcan be of any arithmetic or pointer type.They are compared to 0 as if
by the == or != operator. Note the implicit comparison between a pointer and NULL
above. The result of the && or || operators is an int and is never an lvalue.

Ternary expression (Level 3)

• e1?e2:e3 : No other language before C had anything like the ternary, or conditional
operator! e1must be arithmetic or pointer type, and is compared to 0 as if by the ==
operator. If e1 is non-zero, then e2 is evaluated and that becomes the result of the
expression, otherwise e3 is evaluated. Onlyone of these expressions is evaluated. Ifboth
contain side-effects, only the side-effects of the selected expression happen. e2 and e3
can be of any type and are subject to the usual unary conversions. If they are not of the
same type, the rules are somewhat complex - basically they must be compatible as if by
assignment, so the expressiona=b?c:d has to work. Referto the C standard orHarbison
& Steele, pg. 245. The result of the ternary expression is not an lvalue, although C++
allows(c?a:b)=v , as do some GCC C compilers.

ECE466:Compilers Unit4/pg 45 ©2025 Jeff Hakner

Assignment expressions (Level 2)

• e1=e2
• e1 += e2
• e1 -= e2
• e1 *= e2
• e1 /= e2
• e1 %= e2
• e1 ̂= e2
• e1 |= e2
• e1 &= e2
• e1 <<= e2
• e1 >>= e2 : All of the assignment operators are at the same precedence level and are
right-associative.

e1 must be a modifiable lvalue and can not be qualified byconst .

The compound assignment operators are similar to a simple assignment combined with
the binary operator, e.g. a+=bis similar to to a=a+b. Howev er, there is an important
caveat: The expression a will only be evaluated once. This becomes important if there
are side-effects. Soin x[f(y)]+=z; the function f must only be called once.

e1 and e2 are not subject to integer promotions. therefore
char *p1,*p2;

*p1 = *p2; // Only one byte is moved, not a whole int

If the types of e1 and e2 are not identical, an implicitassignment conversion takes place,
as if e2 had been explicitly cast to the type of e1. If this cast would not be permitted as
an explicit cast, then the assignment is a fatal error. In some circumstances, the implicit
assignment conversion raises a warning, but that warning can be circumvented by an
explicit cast. Some examples below.

The resulting type of an assignment is the type of e1. The result is never an lvalue. In
very early versions of C, structs and unions could not be assigned. This is no longer the
case, but the assignment operator still can not be used to copy a whole array. This is
because if e1 is of array type, the usual conversions are applied, making it a pointer type
which is not an lvalue.

As an interesting aside, in very early versions of C, compound assignment operators were
reversed. E.g.a=+3; . This was borrowed from the predecessor language B and cut down
on the complexity of the compiler, which was being hand-coded. Of course,a=*b now
becomes ambiguous because it might also bea= *b . The former is a compound
assignment operator and the latter is a simple assignment and a pointer dereference.This

ECE466:Compilers Unit4/pg 46 ©2025 Jeff Hakner

form of compound assignment was deprecated in the 1980s.
/* Examples of assignment conversions */
int i,*pi;
unsigned int u,*pu;
unsigned char uc;
const int ci,*pci;
volatile int vi,*pvi;
float f;
struct s1 {int a,b;} s1a,s1b,*ps1;
struct s2 {int a,b;} s2a,*ps2;
int a[10],(*pa10)[10],(*pa5)[5],(*pau)[];
void *vp;

void z(void)
{

f=i; // No problem, but potential loss of precision
i=f; // No problem, but potential loss of range
uc=i; // No warning, but potential loss of range (discard high bits)
pi=pu; // Warning int != unsigned int
u=i; // No problem, but garbage if i<0
i=ci; // No problem
ci=i; // ERROR: can’t assign to a const qualified type
(int) ci=i; // ERROR: nice try, but casts are not lvalues
*(int *)&ci = i; // OK, if you insist!
pi=pci; // Warning, discarding qualifier from type underlying pointer
pi=(int *)pci; // OK with explicit cast
pi=pvi; // Warning, discarding qualifier from type underlying pointer
pa10= &a;// No problem, identical types
pau=pa10;// No problem, int[] is compat with int [10]
pa5= &a; // Warning, int[10] is not compat with int[5]
pi=i; // Warning, implicit cast from integer to pointer
pi=0; // No warning, always ok to assign 0 to a pointer
pi=z; // Warning, conversion of function ptr to int ptr
vp=z; // No warning, void * is the "universal pointer"
s1a=s1b; // No problem
s1a=s2a; // ERROR: can’t assign different struct tags
s1a=(struct s1)s2a; // ERROR: can’t cast them either
ps1=ps2; // Warning: pointers to different struct types

}

Comma Expressions (Level 1)

• e1,e2 : The comma, or sequential operator is also an invention of C. e1 is fully
evaluated. Any value which it may produce is discarded, (but side-effects still happen)
then e2 is evaluated and the result is the value of the overall expression. Thereis no
requirement that e1 and e2 be of compatible types.The result type is the type of e2 and is
not an lvalue. Harbison& Steele says that unary conversions are applied, but the current
ISO C standard does not, and gcc seems to follow the latter, e.g.sizeof (i,c) where i is

ECE466:Compilers Unit4/pg 47 ©2025 Jeff Hakner

an int and c is a char, is 1.

Note that syntactically, a comma expression is at the top level of the definition of an
expression. Thereare places in the grammar where an expression is permitted but this
could cause confusion with other uses of the comma token, and therefore in those places
the grammar specifies an assignment_expression (i.e. starting at Level 2). Theseplaces
are function calls, enumeration value declarations, initializers, bit field length specifiers in
struct/union definitions.

