ECE466:Compilers Unid/pg 1 ©2025 JéHakner

Semantic Analysis of the C language

In this unit we bgin discussion of semantic analysis with an
emphasis on the C langga

Compile-Time vs Run-Time

We @an speak of the compiler as existing imtworlds: compile-time, when the compiler

is actually &ecuting, and run-time, when the target program will Beceting. The
compiler performs actions, creates data structures, etc. at compile time which result in the
emission of code which, in turn, whemeeuted at run-time, creates and manipulates
values and takes other actions specified in the original source code.

In contrast, an interpreteists in only one time, because source code is acted upon
immediately We oould think of a compiler as an interprettétre actions of which are to
emit the target code (e.g. assembly language on the target machine).

Certain values can be computed at compile-time, such as the size of (enagi)es,
expressions imolving constants, etc. Others, such as the value inside of a variable, are
indeterminate at compile-timePat of the optimizess job is to trace out the fio of
control and data through the program and attempt to predict, tatére possible, useful
constraints on values which may lead to optimization of target code.

Syntax-Directed Translation

In unit 2 we hage ®en the use of embedded (semantic) actions within a yacc/bison
grammay and the passing of synthesized and inherited attributes along the valuelstack.

is possible to use these tools to perform the translation from source to target language in
one passas he source language is being parsédis is also known aSyntax-Directed
Translation. The example bele compiles @pressions to a simple intermediate
language in which there is an unbounded number of temporary registers:

ECE466:Compilers Unid/pg 2

%debug

%error-verbose

%{

#define YYDEBUG 1
#define YYSTYPE char *

int tmpcounter;

char *tmp()
{
char buf[256];
sprintf(buf,"%%TMP%04d",++tmpcounter);
return strdup(buf); /Il NOTE: Memory leak!

%}
%token NUM
%token NL

Wleft '+ -’
Wleft '~ '/
%nonassoc '(’
% %
start:
expr_line
|start expr_line
expr_line:
expr NL {printf("\tPRINT %s\n",$1);}
INL
expr: NUM {$$=9%1;}
| e Xpr '+’ expr {printf("\t%s=ADD %s,%s\n",$$=tmp(),$1,$3);}
| e Xpr -’ expr {printf("\t%s=SUB %s,%s\n",$$=tmp(),$1,$3);}
| e xpr '/’ expr {printf("\t%s=DIV %s,%s\n",$$=tmp(),$1,$3);}
| e Xpr '*’ expr {printf("\t%s=MUL %s,%s\n",$$=tmp(),$1,$3);}
| - expr %prec (" {printf("\t%s=MUL %s,-1\n",$$=tmp(),$2);}
| C expr’)’ {$$=%2;}
% %
main()
{
yydebug=0;
yyparse();
}

yyerror(char *err)

{

fprintf(stderr,"syntax error:%s\n",err);

©2025 JéHakner

ECE466:Compilers Unid/pg 3 ©2025 JéHakner

The$$ value of each symbol is the temporargister in which its run-time value will be
found. E.g.

INPUT:
3*4+10*5
OUTPUT:
%TMP0003=MUL 3,4
%TMP0004=MUL 10,5
%TMP0005=ADD %TMPO0003,%TMP0004
PRINT %TMPO0OO0O05

(Note that in the ab@® example code, there is no "garbage collectioiitie sidup
contains an implicimaloc and at no point is therefee . This would be a "memory
leak" problem in a real compiler)

At one time, a one-pass compiler wadremely desirable, because memory and disk
space was limited.However, writing a one-pass compilerusing syntax-directed
translation, constrains us to following the exact parse tree that the syntax gendnetes.
becomes cumbersome as language complexityggrbecause the structure of the source
language grammar might not reflect well the order in which target code needs to be
generated.

In modern compilers, the embedded semantic actions create an intermediate
representation (IR) in memagmyhich is then re-processed one or multiple times, refining
and optimizing it, and finally transforming it into the target languafe’l | discuss IR in

more detail in Unit 5. Not all of the IR corresponds tecaitable (run-time) constructs.

E.g. the compiler may use the same techniquesiitd bompile-time representations of
data types.

Abstract Syntax Trees

Many compilers use a graphical form of representation known aabatract Syntax

Tree (AST). Itis called abstract because, while it is related to the parse tree, it is not
literally the parse tree. Certain grammar symbols, whixkist epurely for parsing
purposes, might not be reflected in the A8Tthe AST may hee a dfferent ordering or
structure. TheAST may not actuallyen be a tree,” rather it is often in the form of a
directed graph.

An AST consists of nodes and edgé&sach node may ka atributes associated with it.

In implementing an AST in C, the nodes are often held in dynamically allocated structs,
with the edges being pointers within those strudach node has a different set of
attributes, depending on the node type, and this makes the AST a polymorphic data
structure, in that edges from one AST node can point to another AST node of arbitrary

type.

In mary cases, construction of an AST using embedded actions is straightforward and
follows naturally from the actual syntax. As an examples letk at a passage from the

ECE466:Compilers Unid/pg 4 ©2025 JéHakner

"expression calculator" grammae-written to generate an AST:

/* Note: some syntax needed to implement a polymorphic AST has been elided */

expr: NUM {$$=ast_new(AST_NUM);
$$->number=$1.number;}
|expr '+ expr {$$=ast_new(AST_BINOP);
$$->op="+;
$$->left=$1;

$$->right=$2;}

In the first rule, an AST node is created for a terminal, and is filled in withyaatiapf

the information needed garding that terminal. This information had been passed up
from the lxer inywhad and was automatically copied to the yacc/bison value stack as
$1.

In the second rule, assume that the semaatieeg from the teinstances of the rhs non-
terminaleqx are pointers to correct AST representations of thosexpusions. Then

by creating a ne AST node to represent the addition operation, and connecting it to the
two subexpressions, the semantic value associated with theqhsis, by induction, the
correct representation of that expression.

RULES AND EMBEDDED ACTIONS

expr:
expr '+ expr {$$=ast_new(BINOP); AFTER REDUCING

$$->left=$1;$$->right=$3;$$->0p="+";} $ —
BINOP
op="+
left right

| NUM {$$=ast_new(NUMBER);
$$->value=$1.number;}

BEFORE REDUCING

$l\‘ | \‘ ‘ ‘

The Symbol Table

Symbolic names are a critical part ofyaorogramming language. The symbol table
subsystem of a compiler is responsible for keeping track of which symbolic namees ha
been seen, and the attributes associated with each instance.

The symbol table could be conceptually thought of asngathe following abstract
interface:

*cegie : Create a n@, empty symbol table.

ECE466:Compilers Unid/pg 5 ©2025 JéHakner

*destoy : Destrgy a symbol table including anstorage which it consumes.

* lookp : Given an «isting symbol table and scope, a name, and a namespace class,
return the associated symbol table entfyt exists, otherwise return the fact that the
symbol does notxest. Thelookup operation must go through the stack of scopes until
the outermost (file scope) before concluding that the entry doesxisot &he entry
contains attributes, which will be discussed telo

* eer : Given an «isting symbol table, a name, a namespace class, and a set of
attributes, enter this symbol in the tabla.boolean parameter can determine whettier

a yymbol with the same name and namespace already exists in the table, to replace the
definition or to return an error.

Identifiers and attributes

The attributes which are stored with each symbol will vary depending on the use of the
symbol. Inthe C language, the lexical pattern consisting of an underscore oy letter
followed by O or more underscores, letters, or numbers, is called an "identifier". There are
10 different purposes for which identifiers may be used (not counting pre-processor uses
or C23 extensions):

« variable name (including function formal parameters)

« function name

* typedef name

* enumeration constant

* struct tag

* union tag

* enum tag

* label

* struct member

* union member

For discussion purposes, here is an example (not necessdrdyisve a complete) of

the attributes which the compiler needs to maintain during compilation for each identifier
class:

* variable: type, storage class, offset within stack frame (for automatic storage class only),
initializer constant or expression.

* function: type (includes return type andy@nents), storage class (extern or static),
presence ofine specifier whether a definition for the function (the actual code) has
been seen yet.

* struct/union tag: symbol table containing member definitions, whether definition is
complete or not.

» enum tag: once the definition is complete, nothing. One might try to link back to all of
the enum constant names which are defined under this tag, for error reporting purposes.
» enum constant: alue. Onamight want to link to the enum tag too. In the C language,

ECE466:Compilers Unid/pg 6 ©2025 JéHakner

identifiers which are enum constants simply become ints in the expression, i.e. the enum
tag does not propate. Ifx is of typeenume, the type of the)gressionX) isit , not

enume .

* statement label: Intermediate code or assembly language label of the basic black be

by the C-language label. (This will makore sense once code generation is discussed).

* typedef name: equélent type.

* struct/union member: type, offset (within struct only), bit field width and bit offset.

For error reporting purposes, all symbol table entries should also contain the file name
and line number at which the symbol was first defined (entered into the symbol table).
This will greatly assist in giving useful error messages in the case of duplicate or
conflicting definitions.

Namespaces

It is possible in C for the same identifier name, in the same scope, to refdetendif
things, because that identifier useuld be unambiguous based on surrounding syntax.
The following are the groups, aame spaceswhich C defines:

 Labels, because thare used either with thgoo keyword, or with the syntaibel

" Staterment . Both uses are unambiguous.

» Tags: e.gioo in studtfoo , havetheir own namespace. Their use is unambiguous
because it is alays preceded by the struct, union or enuegword. Hawever, gruct,

union and enum tags are all lumped togetlieg.
int f;

struct f {int f;} g; //OK

union f {int h;} u; /INot OK, tag f is already used

» Each struct or union definition creates an independenat@rnamespace which is in

effect a mini-scope or mini- symbol table. The member namesyostanct or union,
therefore, will nger conflict with member names of yamther struct or union, nor with

ary of the other identifier classes. This is because member names can only be used as the
right-hand operand to a . or -> operasod the structure or union to which yhieelong is

then implied by the type of the left-hand operand.

* All other identifier classes: enum constants, typedef names, variable or function names.

Scopes and Visibility

A particular instance of an identifier is not necessavilible at every line of the
program. TheC gandard identifies the followingcopef visibility:

* File scope: an identifier with file scope is visible from its point of declaration until the
end of thatc file (not considering pre-processor direesi uuich agihdude). File scope
applies to declarations seen outside gffamction definitions, i.e. "global” declarations.

ECE466:Compilers Unid/pg 7 ©2025 JéHakner

* Block scope: An opening curly brace within the body of a function introduces a ne
block scope.ldentifiers declared within a block are visible from that point until the end
(closing curly brace) of that block. Note that just as blocks are nestable, so too are block
scopes. Bloclscopes can be thought of as translucent with the innermost block on top.
Declarations which happen in an inner block obscure the visibility of identifiers
appearing in an outer block, until that inner block is done. Also, declarations in a block
scope may obscure file scope.

» Function scope: Function scope is associated with the outermost block of a function.
Function and block scopes are very simitae primary distinction being in the handling

of statement labels. Labels arevays placed into the scope of the function in whiclythe
appear If a label is defined inside of an inner block scope, it is nonetheless visible
throughout the entire function. Note that in the definition of a function, the formal
parameters (which appear inside the parentheses, plus the declarators between there and
the opening brace in classic C\vhaa sope as if thg had been declared at thegh@ning

of the main block of the function.

* Prototype scope: The C standard uses this term to handle the case of identifiers which

appear in a prototyped function declara&y.:
unsigned fu(int a,double d);

This is not the same as tldefinition of the function, which includes the actual code
associated with it. The identifiers which appear in the prototype are not meaningful, just
the list of types of the arguments, and so the introduction of this term "prototype scope" is
of dubious walue to the compilewriter. During a function definition, hwever, we'll see

that the prototype scope gets promoted to be the funesoope.

ECE466:Compilers Unid/pg 8 ©2025 JéHakner

file (global)
N
function
7 x\ block

7
int i 7
|nt fglnt p) , installed afte

p |)1t |lk/ /’:/ - e
{Z - :,,ff,i-,': ,,,,,,,,,,,,,

/,-’ ~int; x(|nt a,int ﬁ), |
i } ''''''' = *;’t ‘
} | currentscope

‘ Will be destroyed
| after)

In implementing a symbol table, one approach might be to create a stack (or linked list)
of scopes, each pointing to its associated symbol table. When looking up an identifier
the symbol table at the top of the stack, corresponding to the innermost scope, is
consulted first, then if nothing is found, thexnene, etc. until the bottom of the stack,
representing file scope, is reachefio handle the dierent namespaces, one could
maintain an array of symbol tables for each scope, one element per name space.
Alternatvely, one could add a namespace tag to each symbol table entry and only
consider a match to occur if both the name and the namespace are identical.

Paoint of Identifier Installation

The point at which an identifier is installed into the symbol table depends on identifier
class:

* variable name: End of declarator (see Bel®eclarators and Abstract Declarators") in
which variable name is mentioned.

« function name: End of declarator in which function name is mentioned, or point of use
in the case of implicit declaration (see below)

ECE466:Compilers Unid/pg 9 ©2025 JéHakner

* typedef name: End of declarator in which typedef name is mentioned.

* struct/union tag: See discussion of structure and union incomplete types.

» struct/union member: End of declargt@ppearing within a declaration within a
struct/union definition, in which member name is mentioned.

* enum tag: end of enum definition (closing brace)

e enum constant name: after name is mentioned (possibly with explicit value) in enum
definition.

* label: definition point at labeled statement, or implicit forward declaration when used in
goto.

Declarators and Abstract Declarators

The termdeclarator is defined in the C standasdyammar as the syntactic element in
which the identifier is mentioned, and resemblesyadibset of the C expression syntax.

For example, in the following code:
const int a,*pa,*ap[10];

The tolensoonstint form thedeclaration specifiers and each of the items delimited
by commas is a declaratoDeclarators are formed with identifiers, pointer constructs,
array constructs, function constructs, and parenthesized declardtoag.follow the
same rules of operator precedence as the C expression graemthamdeed G
declaration syntax may informally be described as "you declaresiiydik would use it
later on." There are alsabstract declarators which are identical to "normal"
declarators except for the ommision of identifiefsiey are used in abstract type names,
which can appear only in cast and sizeof expressions, or in function protofyges.
example [t ™) iIs an abstract type of (array(unknown size, of (pointer to(pointer
to(int))))) This "missing identifier" syntax is often confusing.

Forward Declarations

Generally speaking, in the C language, identifiers must be declared in some visible scope
before thg are used. When a name is used priorxplieit declaration or definition, that

is known as aforward declaration. This is allowed only under these specific
circumstances:

* struct and union tags may be referenced before their member list is declared. This is
known as an incomplete struct/union type.

* statement labels may be used igoa before their definition point (a labeled statement)

is seen. There may be 0 or m@ao uses before the definition point, but only one
definition point is allwed. At the time of the forward reference, the label may be
installed in the symbol table as an incomplete label. Then upon seeing the labeled
statement, the symbol table entry would be marked as complete. If no such definition
point is encountered by the end of the function, this is a fatal error.

ECE466:Compilers Unid/pg 10 ©2025 JéHakner

 functions may be called without first declaring the identifier to be the name of a
function. Wherthis occurs, ammplicit declaration is made in the current scope, and the
identifier is assumed to & type ([t () , a function returning int and taking an
unknovn argument list. In C-23, this is deprecated, as function types with no prototype
are no longer permitted.

Re-declaration of Identifiers

Generally it is an error when a declaration attempts to install a name in the symbol table
when that same name (in the same namespace) is already installed in the current scope.
There are exceptions:

» Redeclaration of a function name is permitted as long as tuedeearation matches

the isting one in terms of type (there are complicated rules for determining whether tw
function prototypes are egalent) and storage class.

* Variable declarations with ax@icit eten storage class do not conflict with pi@us

or future declarations of the same variable (with or withouetle®), so long as the
declared types are egdlent, and the other declaration does notehdorage class

saic ,auo orregser . This allovs, in a compilation from multiple .c files, for the
variable to be declared in a header filexd=n , with that same header fi#edude 'd in

the .c file in which the variable is actually declared.

* Variable declarations in global scope without an explicit storage class and without an
initializer may be repeated, so long as the declared types avalequi E.g.tint

[isavalid C program. This is known as the "Common Block" model.

Storage Class and Duration

The scope of a variable (where it igit&lly visible in the program) is not necessarily the
same as its lifetimeVariables declared in global (file) scopevba diration which is the
duration of the entire programVariables declared inside a function scope generaihg ha
a duration which is that of the functionHowever, saic ~ variables declared within a
function hae local scope, but global duratioauo variables declared inside a block
scope lexically go out of scope at the end of the blouk,tleir storage duration (or
"storage scope") is the entire function. Consider:
int *f()
{ .
int *p;

[%..*

{ 1 ntx=66;p=2&x;}

/* p still points to valid memory here */

return p; /* Dangerous, p points to memory which will be gone */

}
The C syntax allows for certain storage class specifiers tovee igi a ceclaration or

ECE466:Compilers Unit/pg 11 ©2025 JéHakner

function definition to control he and for hav long the object being declared will be
stored. Thesare auto, register, extern and static. The semantics of these storage
classes are well documented in the C standard and oxterated will not be oeered

here. Haovever, while these four storage classes define the semantics that are visible to
the programmeras @mpiler writers we need to consider additional storage clagses.
example, a local ariable and a formal function parameter both nominallye lzato
storage classHowever, when we generate target code, we need to distinguish between
these tw conditions, because the way we access loadhbles in assembly language
will differ from parameters.We'll see some more examples and issues in the unit on
target code generatiorAnother subtle but significant difference is that winilie and
exdemnti both nominally heeexdem storage class, thesedwleclarations do quite
different things with respect to the linker stage’l | revisit these issues in Unit 7.

Storage class can only be applied to declarations of a variable or function. As we shall
see in a later unit, all that a storage class does is determina Vaoiable is accessed at
run-time, and/or whether the associated symbol is made globally visible by tbe link
Therefore, it is meaningless, and not allowed by C, to attach a storage class to a structure,
union or enum definition (i.e. the definition of the tag with its members, as opposed to a
declaration of a variable of struct, union or enum type), to a typedef, to a label, or to a
structure or union member (their storage class is "inherited" from the structure or union in
which the appear).

When a storage clasgyvord is omitted in a function or variable declaration, aadkf
storage class may be imposed by the C standard. E.g. variables declared in a function or
block scope haeauo storage class.

The storage class is an attribute ofaaiable or function symbol, distinct from the type.
E.g.

static int a;

The type of a ist , notgatcint

C-23 werloads theaun keyword for something which is not a storage class, and which,
in the authos goinion, is a completely absurd and useless feature in C.

Type Systems

Almost all programming languages veatype systems.Type systems are a way of
allowing programmer to express intent rather than mechanics. The compiler eepst k
track of the types of variables, expressions, etc. in order to generate the proper code.

Enforcement of type rules catches certain types of programmer errors. Some languages
are \ery strongly typed, to the extent that yhemply cant do certain things which
violate their type model. Other languages such as C are more loosely typed: the compiler

ECE466:Compilers Unit/pg 12 ©2025 JéHakner

may complain, but the programmer can generalgyrale type-safety decisions.

Programming languages canvbamoth static and dynamic typingC has only static.
Dynamic typing requires run-time support, e.g. inserting a tag into objects to encode
their type and cause thexeeution of the appropriate methodnterpreted languages
typically have geater support for dynamic typing.

TypesinC

This is not intended to be a comprehensefeence on the C langge, lut merely to
illustrate the issues facing the writer of a compiler forhe reader iseferred to the C
language tandard, the textbook, or Harbison & Steele.

Central to the C compiles’goeration is the ability to represent C language data types,
including potentially complicated types, and to manipulate and analyze these type
representations. ypically, an AST is used to represent types asythee constructed
within declarations or abstract type names (used in prototypes and casting). ASTs can
also be used to represempeessions. ThAST can be queried in a number of ways:

* Calculate thesizedd an expression or type

» Calculate the resultant type when an operator is applied to a subexpression or
subexpressions

» Generate code to calculate the value (rvalue) of an expression

* Generate code to calculate the Ivalue of apression. Thdvalue is a name or
expression that can be used to store a value.

» Generate code to calculate the run-time address of an expression

In the pages that folg we will see hav types can be represented with ASTs, and ho
some of the ab@ aalysis can be performed. Some analyses, particularly those
involving code generation, will be gered in later units.

Scalar types

C defines certain basic, scalar arithmetic types: theg@mteand the reals. In C99, the
comple type is also defined. C23 adds the bool type (which is basically treaged lik
char); in C99 Bool was an optional featutetegers consist of chashort, int, long and

long long sizes.Although commonly these are represented in 8, 16, 32, 32 and 64 bits,
the C standard does not requirg garticular number of bits for gmgiven type. Infact,

the int type is specifically designed to be the "best'gertdype for a certain tget
architecture. O native &4-bit system this might be 64 bits, while at the other end of the
spectrum, it might be 16 bits for an embedded systeneger types may be signed or
unsigned. Bydefault, all inteer types are signed unless specifically made unsigned by
the unsgnred keyword (or the appearance oflasuffix on an integer constant)An

ECE466:Compilers Unid/pg 13 ©2025 JéHakner

exception is made father , which the C standard says may be either signed or unsigned
(most implementations makt sgned by default).

Note: Although | use the term "scalar types", the C23 stahdaw calls these "basic
types"”, and considsrmointer types to also be scalars.

The C standard defines thre@ds of precision for non-ingger arithmetic types: float,
double and long doubleAgain, the choice of representation and the exact precision is
implementation-specific. Imost cases, |IEEE-754 floating point format is used, and
floats are 32 bits long, doubles are 64 bits, and long doubles may be 80 or 128 bits (long
double was added in C99.) C99 comptgpes likewise can hee float, double or long
double precision, and are iact internally handled as a struct with a real and imaginary
component.

While the types of variables are explicitly declared, the compiler needsuotkadypes
of constants.They may be specified directly by the programmer usindgpses (e.g. UL,
LL), or the type can be inferred by thalwe and knowledge of the ranges afues
representable in each type. This is discussed further in the texts.

Thewvod type is a special scalar type which is used to indicate the absence of a value.

This fixed set of arithmetic types suggests that, within the compilgngle 8-bit word
with bit fields could be used to represent them, or alteeata bit-field struct. Many
years ago, when memory was scarce and compilers weeye'lveavy" programs, such
bit-packing tricks were essential.

Enum types

enum types are equaent to ints in C. It is néer an aror to assign an int to an enum or

vice versa, and no range checking is requiretke dructures and unions, enums are
defined once, possibly with an associated tag, and can be used later with a typedef name
or the wordenum followed by the tag.Unlike dructure or union members, the identifiers
listed within the enum definition are not in an independent scapeéndiead get placed

into the symbol table currently in scope. enum constant names areeiytfieng else”

name space and must be unique from variable, function and typedef names visible in the
same scope. The only moderately tyitking for the compiler is to keep track, during an
enum definition, of the last integer value associated with the last constant naadagso v

can automatically be assigned if not specified.

enums are not "first class types". If yheere, assigning a value of typamapge to
enumoange would be a type mismatch erroeénums are simply aliases for integers, and
this feature was not present in original C because almost all of the same functionality can
be accomplished with the preprocessor.

Type Qualifiers

ECE466:Compilers Unid/pg 14 ©2025 JéHakner

Type qualifiers were first introduced to the C language in ANSI C (C-89), with the
addition of the kywordsconst andwdaie . These qualifiers modify scalguointer,
array druct or union types, and must be "carried around" by the com@@9 added a
new qualifier resict which can only be applied to pointer types (and array typsds, b
only in prototypes).Qualifiers do not change the actual representation of a type, put the
do create compile-time restrictions ormha type can be used, and pide hints to the
compiler for optimization.

Composite Types

More complicated types are created from the basic scalar types by applying, poeer
or function declarators, or by defining structs or unions with a member list.

Pointers

Within the compilera pointer type can be represented with an AST node indicating a
pointer and then a pointer to the AST of the underlying typainters can also i@ a
gualifier, e.g. nt*constip; declares a ponter which does not change, but which points
to an unqualified int (contrast wonstintp;).

C99 added theestict qualifier which can only be applied to pointer types, or array
types used as formal parameters (which are really just pointer typ&sa promise from

the programmer to the compiler that that the memory location(s) referenced by the
pointers value will not be changed through some other paintéis allows the compiler

to generate more optimal code based on datad@lysis.

Arrays

An array type is slightly more complicated. The AST node must contain a pointer to the
element type of the array (the element type can not be a functmh,or a type of
unknownn size), and there must be an indication of the array size (number of elements).
The size can be a specific constarpression known at compile-time, or it can be
unknownvn (e.g. formal parameter to a function or referencing an extern array). C99 adds
compleity by allowing for variable-length arrays and variably-modified array typés

size of the array is then tied to a potentially arbitratgression and is not known at
compile time. The compiler must insert run-time phantom statements to compute the size
of the arraydlocate storage for it (when declaring an array variable of variable length),
and to perform proper pointer arithmetivariable-length arrays are not permitted for
extern or static storage class. The reason for this will become apparent when the typical
assembly language and linker direesi for declaring such variables arevexed in Unit

7. Thebinding or computation of a variable-length type happens at run-time at the point
when the declarator is encountered, and is thex fiar the lifetime of that type instance.

ECE466:Compilers Unid/pg 15 ©2025 JéHakner

Therefore:
f0
{
int x=5;
int a[x]; // similar to int *a=alloca(x*sizeof (int))
x=10;
printf("%d\n",sizeof a/sizeof (int));

}
gives the answer 5.

C99 allows for qualifiers within an array declaratast only when used in a function
prototype, in which case the array type is automaticallweted to a pointer type
anyway The same qualifiers (consplatile, restrict) are permitted as for pointer types.
C99 also introduced an odd syntaxalving the leyword saic . This is a hint to the
compiler about the size of an array to which the formal parameter is pointing.

Functions

A function type can be represented by an AST node which in turn points to an AST
representing return type (functions may returry dgpe except "array of..." or
“function..."), and has a list of pointers to the types of tigeiraents. Theatter is the
prototype for the function, and is optional to retain compatibility with classic C.

Therefore, the declaration

int f();

declares that f is a function which returns int and takes an unspecified argument list,
while

int f(void);

declares f specifically as taking ngaments. Note that C23 leaks 50 year of C @de

and now forbids functions without a prototypehe syntax f() now is equivalent to f(void)

The compiler must also handle the presence of #mble argument list specifier
which may appear at the end of the argument list. oRfior to C-23, such aariadic
function prototype must ka & least one fixed argument (e.gt pinti{char
Homet,..)) but C-23 allowdtf(.)

As previously mentioned, a function name may be redeclared, as long aw thednad

declarations are "compatible." Therefore
int f();

int f(int); /I OK, first def has no protoype
int f(); // Still OK
int f(double); Il Error

Both gcc and clang install all objects of type function at global scaps,ikthey are

actually declared in a function or block scope:
void g(void)
{

ECE466:Compilers Unid/pg 16 ©2025 JéHakner

{
int f(double);

f(1.0);
}

char *f(double); /l Should be valid, but gives an error
This appears to contradict the standard.

Structures and unions

Structures and unions V& two aspects. Adefinitionof a nev struct or union lists the
members, and is similar to a list of variable declarations which might appear within a
block. Eachdefinition introduces a me distinct type. Once defined, that type can be
referencedto create variables of struct or union type, pointers to such, abstract type
names, etc. There are dwnechanisms for doing this: either saying the reservedw
sud (or unon) followed by the tag, or by using a typedef alid$iese methods are
equvalent. Struct/uniordefinitions can appear within a declaration, abstract type name
or cast, and need notJeaa tig. Havever, if the definition has no tag and is not sonveho
captured with a typedef, there is no way to get back at it later.

So, when the compiler encounters a struct or union definition, it must creatg a ne
symbol table, which can only contain identifiers of the identifier ctemsber |.e. other
identifier uses, such as variable name, function name, label, etc. can not be installed into
this mini-scope. Also note that structure, union and enum tags are not installed in this
mini-scope, ht rather are placed in the nearest enclosing scope. The member mini-scope
will be exited at the closing brace of the struct/union definition, but the underlying
symbol table will not be destyed. Theinternal representation of a struct/union type
includes this symbol table, and also some helpful information such as the size of the
struct/union and the tag (if any) which defines it.

struct or union definitions can be incomplete, i.e. there is no member list. This is

necessary for self-referential structures, e.g.:
struct leaf { /* etc. */ }; /l Enclosing scope

{ [/ I d efof structs rooted in this scope
struct leaf;

struct node {
struct leaf *leaf;
struct node *node;
struct foo { /I Tag placed in block scope
int a;
} bar,;
h

struct leaf {
struct node *node;

ECE466:Compilers Unid/pg 17 ©2025 JéHakner

struct leaf *leaf;
struct leaf myself;// NOT VALID, INCOMPLETE TYPE

h

struct foo f1; /I struct foo defined above

}

Incomplete struct/union types are a form of forward declaration, i.e. use before
definition. The can be used in gnstuation where it is not necessary to Wno
Sizedktype) . E.g. one can alays declare a pointer to an incomplete struct/union type,
but it is neve valid to declare an instance of the struct/union itself, whether a variable or a
struct/union membemhen that type is incomplete. Nor would an array of incomplete
structs be valid.

The syntax shown ale, with a struct tag and nothing else, esjud ke, Is a
special construction. It tells the compiler to hide gre-existing definition of that tag
(i.e. if sructleaf were visible outside of the outermost set of braces) and staw,a ne
incomplete definition. This construction does not work for enum.

The definition of a struct or union is considered complete after the closing brace of its
member list. Therefore, the memlmysef above is not valid, because the definition of
structleaf Is not yet completeThe compiler must be able to determine the sizeof each
membey because it must allocate fedéts. \ariable-size arrays can not be structure
members. C9&llows for one array of unspecified ([], not variable) size to be the last
member of a structure. Thisgiiimizes a long-standing C programming trick of creating
variably sized structs which ka a luffer at the end. Refer to the texts for more
information.

Installation of the struct/union type definition into the symbol tabigniseas soon as the

opening brace is seen. E.g.
struct A {int a;}

f0
{

=

struct A {
struct A *p;
i ntb;} AL,
Al.p= & Al;
Al.p->a=1; [/lerror: no such member a

O©oOoO~NOOTR,WN

}
At line 4, a nev incomplete definition of struct A is begun in the scope of functiohtf.

line 5, this incomplete definition has hidden the definition from line 1, therefore the
member p refers to the definitiongus online 4.

The "binding" of a particular struct or union type to its tag takes place once. E.g.
f0

{
struct A {int a;};

ECE466:Compilers Unit/pg 18 ©2025 JéHakner

struct B {struct A *ap;};

1*.*
{
struct A {double z;};
struct B b; [* Contains a ptr to the struct A defined
in the scope of function f(), NOT
the instance of struct A in this block scope */
b.ap->a=0; /* Therefore this line works */
}
}
And likewise:
struct A {
struct B *bp; /I Incomplete struct B in file scope
%
int f(void)
{
struct A a;
struct B *bp; /l Binds to incomplete type in file scope
struct B {int x;}; /l tag B defined in fn scope, doesn’t complete *bp
bp->x++; I ERROR: bp refers still to incomplete type
(a.bp)->x++; I ERROR: a.bp refers to incomplete type
}

Members of structs and unions dandve storage classes, but thean hae qualifiers,
because qualifiers are part of the tyfnce only members can be declared within a
struct/union definition, use of a typedef is not permitted within the definition, nor can a
member be defined that has function typay nested struct, union or enum definitions
are placed in the nearest enclosing (file, function, block or prototype) sthfeis true
regadless of hav deeply nested these definitions aié.this were not the case, the
would not be visible outside of the member list, armlld be fairly useless. Here is an
odd example wolving struct tags in prototypes:

int f(struct foo {int a;} *p)

{
struct foo q; /IOK
g.a=1; /IOK

}
struct foo z; //[ERROR
int g()
{

struct foo {int a;} b;

f(&b); IHUGLY, GIVES WARNING, STILL WORKS
}

The definition of structure tafpo occurs inside of a prototype scope. Because the
declarator fof is a function definition, this prototype scope, in effect, gets "promoted" to

ECE466:Compilers Unid/pg 19 ©2025 JéHakner

a function scope. Anotheray of looking at it is that it was a function scope all along,
but in practical terms, it is not possible during parsing to determine whether a particular
function declarator is going to be merely a prototyped declaration of the fusagturn

value and parameter list, or is going to be faka by a pair of braces giving the actual
function definition. Either \ay, the definition ofstuc foo Is valid until the closing
brace of the functiofi. It is not visible in file scope and thus the following line is an
error. In addition, there is no valid way to call function f with a matching prototype,
because the definition aud foo disappears. Whileone could lay out another
structure with the exact same member list, it is still not the identical gehis reason,
including a structure or union definition inside of a prototype is considered bad practice.
These peculiarities should illustrate that a compiler must be careful about the nesting of
scopes.

AST type representation vs parse tree

Below is a pssible AST representation of the following code

static struct s1 {

int z;

struct sl *self;
} * (*p[10])(int, double);

ECE466:Compilers Unid/pg 20 ©2025 JéHakner

global scope

STRUCT
"Sl"
MEMB
IIZII
MEMB \
| "self” SCALAR
VAR int
llpll
stg:static
ARRAY / PTR |~ | FN PTR
#=10]
/
SCALAR
int
SCALAR
double

One of the challenges in constructing this representation is the nature of the C declaration

syntax, which is "inside-out"A C declaration is of the form:
declaration:
declaration_specifiers declarator_list

The declaration_specifiers may contain simple type specifiers, suoh a$/pedef
names, or struct/union/enum references (possibly with an embedded definitian).
specifiers may also be modified by qualifiers (e.g. const, volatile) or storage class.

The declarator is a limited subset of the general C expression syntax, as described
previously ("Declarators and Abstract Declarators")

Unfortunately the AST which would be built "naturally” byauating the declaration

ECE466:Compilers Unit/pg 21 ©2025 JéHakner

from the parse tree comes out wrong:

declaration
P

\ :
decl_specs declarator_list

—/ \

stgclass decl_specs_opt declarator

|
pointer_declarator
type_spec]
> declarator

struct_definition \
func_declarator

etc - ‘

declarator ‘(" prototype)’
_ |
pointer_declarator etc.
|
- declarator

|
array_declarator
/ | ~ T~
declarator T expr T

IDENT

There are classically a number of different approaches for rectifying this when writing a
C compiler One method is to alle the AST to be built "backwards", and then mak
second pass toverse it. In the original C compilers, before function prototypes and
other ugliness mucked up the language, thas & straightforward approaclAny data

type could be represented as a list (in the first C compilers, it was implemented by a
fixed-length arraylimiting to complexity of the data type to 16/éks) and the list could

be trivially reversed after parsing the declaratdn fact, the odd nature of C declarations
was based on being able to re-use the same (Liedrihand-crafted, top-down) parser
code for expressions and declarations!

ECE466:Compilers

IDENT

Unit/pg 22 ©2025 JéHakner

Type representation in very
old C compilers (before

ARY (10)

function prototypes!)

PTR

FN

PTR

struct definition

STRUCT

/

Unfortunately the abe@ gproach is na obsolete. Functiorprototypes and ariable-
length arrays maktypes into a tree rather than a simple liBtototypes also introduce

new scopes in the middle of processing a declaraWith suitable care, we could create

the type representation AST with hiddenvéamse" pointers that ale us to get back to

the beginning (the identifier). Another method is to use, as the semantic value of the
rules irvolved in a declaration, a pair of AST node pointers, one of which tracks the

"deepest” node, the other which tracks the "top" fronted use these pointers to
construct the AST the correct way (this is illustrated wélmr a simpler declaration).

ECE466:Compilers Unid/pg 23 ©2025 JéHakner

INPUT IDENT node used as a placeholder

int *f[3];
‘ [T STEP 1: Reduce IDENT f as simple declarato

ARRAY

STEP 2: Reduce array declarator

size=3
\H T
@ @ STEP 3: Reduce pointer declarator
size=3
/
\H T

Symbol Table STEP 4: Reduce top-level declaration

New symtab entry, old IDENT node discarded

Q = ‘
size=3

Ho| T

We might be tempted to just install the identifier into the symbol table as soon as we see
it in the declaratgrut this falls apart for tawvreasons. (1YWe ant alow the identifier to
become visible in the scope in which it is to be installed untiletig of the werall
declarator in which it is mentioned.We'll see some odd cases with typedefs Wwelo
which illustrate this timining quandry2) Although we could tack on the base type at the
end as we are about to reduce the toptldeclarator (i.e. makthe connection between

PTR and STRCT in the complicated example alep the storage class is also
something that needs to get recognized, and its place is in the symbol table entry (the
storage class is NDpart of the type!)

Typedefs

The use of theypedef keyword in a declaration causesyaidentifiers declared in that
declaration to be installed into the symbol table as typedef names. The typedef name can
then be used in a subsequent declaration, or abstract type name, and is completely

ECE466:Compilers Unid/pg 24 ©2025 JéHakner

identical to the original typeTypedefs cart’be dne with simple macros substitution.

Consider:
typedef int (*apf[10])(int);

apf *papf;
#define APF int (*apf[10])(int)
APF *papf; Il FAIL!

A storage class dyword can not appear in conjunction wigpedef keyword, because
typedef names do not V& a sorage class, nor do theapture a storage class for use
later.

Type qualifiers can appear in a typedef definition ang #he recorded as part of the
type. Additionalqualifiers can be added when the typedef is used as a typedef reference
in a subsequent declaration.

Although one can create a typedef of type function, the "function-ness" inherent in that

typedef name can not be used to define a function. E.g.
typedef int ftd(void);

ftd *fp; //OK

ftd f /IERROR
{

}

1*.*

In C-99, variable-length arrays introduce avnerinkle. Thedimension of the array is
calculated at the time of the typedef, and remains static there@fterarray dimension

is not recalculated when the typedef name is used to declare a variable.
int x=3;

main()

typedef int a[x];
{

X=5;
a ary;
printf("%d\n",sizeof ary); /lprints 3*sizeof(int)

}

In theory handling typedefs at the semantiedas easy When a declaration is seen with

the ypedef keyword in the declaration_specifiers, the identifier(s) is installed in the
symbol table of the current scopejtbas a symbol type of TYPEDEF instead of
VARIABLE or FUNCTION. When that typedef identifier is later used as a type specifier
in the declaration_specifiers, the AST representation of the type that was captured
previously during the typedef definition then becomes part of the type of the function or

ECE466:Compilers Unid/pg 25 ©2025 JéHakner

variable being declaredSince the type captured in a typedeVanechanges, it is \en
permissible to share that part of the AST:

Symtab
typedef int **ipp;
ipp ippa[10];
TYPEDEF
Ilippll
VAR
"ippa” %

Breaking the Lexer Abstraction Barrier

Unfortunately the typedef mechanism is going to shatter the false sense of comfort that
we hare cained with contet-free grammars! In a theoretical world, the lexical analyzer
would stand alone, feeding a sequence of tokens as demanded to thebpaesktpn a

fixed set of lexical rules. Hower, consider this:
typedef int itd;

I*..*

void f(void)

{

}

A human reading this code would hopefully recognize ighatis a typedef name, and
therefore the line of code within the function f is a declaration afriabliex as typat .

(the parentheses are redundaunt &re in this example to force the issue of ambiguity!)
However, if the lexer smply returns IDENT as the token class fdr , this syntax is
indistinguishable from a function call. While stylistically we would put whitespace in
between the declaration specifiers and the declarator list, and omit whitespace between
the function name and itsguments in an expression, this is not part of the grammar

itd (x);

ECE466:Compilers Unid/pg 26 ©2025 JéHakner

because whitespace is ignored.

In other words, the grammarn®t context-frege and since after the opening brace either
a ceclaration or a statement (consisting of a function cadfession) are both valid, we
would hare a educe-reduce conflict here.

That the use of an identifier as a type specifieuld break context-freeness of the
grammar was understood at the time this feature was inserted into the C language
(mid-1980s). Hwever, there vas an easy "kluge:" when thexée recognizes the pattern

for an IDENTIFIER, it reaches "up" into the semantic analysis part of the compiler and
asks the symbol table if that identifier is visible as a typedef n#éimse, the leer returns

a dfferent token code, e.gTYPEDEFNAME. This resolhes the ambiguity alve, but

we need a f@ more kluges to handle all of the cases. Consider this example:
typedef int itd;

a0
{

itd *itd;
}
Upon entry to the scope attached to function g, itd is a typedef name visible from global
scope. Thaleclaration will install a ng symbol itd into the inner scope (function scope)
as a variable name. Because of the "timing rules" this installation dtsgnpace until
the end of the declarator in which the second instance of itd is mentioned, i.e. at the
semicolon. Huwever, to be a walid declaratqgrthat second instance must be sent up by the
lexer as DENT, not TYPEDEFNAME, because TYPEDEFNAME '* TYPEDERWIE
" is not a valid token sequencaVith a simple secondary kluge, we can still work this
out: after seeing a TYPEDEFNAME, thexée sets a flag stopping further translation of
IDENTs to TYPEDEFMMESs. Theflag is reset by the parser via an embedded mid-rule
action just before the semicolon, so thestas ready for the nd TYPEDEFNAME that
potentially begins the next declaration.

In K&R C, type names can only appear in the declaration_specifiers portion of a
declaration, therefore only once per declaration, so the simple approaecd iabo

sufficient. WhenANSI C (C89) introduced function prototypes, things rapidly got ugly:
typedef int itd;

f1()
{
itd itd(itd ij, itd itd);
}
This mess declares itd to be, within the scope of f1, the name of a function which returns
int and takes tw int arguments, which ke keen gven the (useless) names ij and itfo
clarify this, let us add sfikes to the ambiguous identifier sfing the scope in which is
is being recognized and its class (T for typedefname, | for identifier).

ECE466:Compilers Unid/pg 27 ©2025 JéHakner

//scope0==global
typedef int itdTO;

f1()
{

/Iscopel==function
/[scope2==prototype

itdTO itd11(itdTO ijl2, itdTO itdI2);
}

Note that itdll must be recognized as an identifier which is being decldieat.
declaration will be rooted in scope lytlihe C standard says that a declaration dbesn’
take dfect until the end of theleclarator in which that identifier is mentioned.
Therefore, as we enter the prototype scope, itdT1 is not yet vidibkn itdTO gves the
type of the first prototype parametdatdi2 declares itd to be the name of the second
formal parametemwhich will obscure the itdTO declaration. Note that if weerse the

order of the prototype parameter list, we get in trouble:
itdTO itdI1(itd TO itd12,itdI2 ijI2);

because the declaration of itdl2 as the first parameter name obscures itdTO, andghis tak
effect when the comma is seen, as that ends the declarator in which itdl2 is mentioned.
Then the second parameter declaration v&lich because itd is not recognized as a
typedef name.

If we turn OFF the IDENBTYPEDEFNAME transformation in the ler as ®on as it
performs an instance of this transformation, we must turn it back @N agon reaching
the end of a complete declarator the opening parenthesis of the parameter type list of a
function declarator We must turn it OFF agin after the closing) of the function
declarator.

Even this approach is not 100% foolproof. The C standard discusses cases which are
truly ambiguous and ges an arbitrary way of resolving the ambiguityAt one point, the

GCC compiler had to use the GLR parsing mode to deal with these rules, which no
longer could be handled with the old xXée feedback” kluge.With the GLR approach,

the TYPEDEFNAME &ke token isnt used, and typedef names are’'dteas IDENT.
IDENT is alloved to be a type_specifierhis results in a reduce-reduce conflict, and the
GLR parser "splits”, trying both possible parse treesemantic value tie-breaking rule
(see the Bison documentation) is then used to determine which ofdipedsible parses

is the correct oneHowever, about 10 years ago, the rules for C, and especially C++,
became so obnoxious, that GCC went back to a hand-coded. péins¢’s right, GNU
stopped using its own GNU product, in its parser! CLANG takes the same hand-coded
approach.

Had enough yet? Here is another example, this time using abstract type names, which

cant be olved using the "beer kluge" approach:
typedef int itd;

f4()

ECE466:Compilers Unid/pg 28 ©2025 JéHakner

{

}

Here f is being declared as a functionlhe return type offfis int. Thatmuch is
perfectly clear The argument whichf takes is ambiguous. It could be another function.
Now, you may ask: He can a function ta& afunction? Inreality, any agument of
function or array type is actually passed as a poirigat C89 and later ali@ the [] or ()
notation in prototypes as a syntacticwanence. Sdhis could be equéent to:

int ff(int _DUMMY (int))

ff takes one ayjument which is a (pointer to a) function returning int and taking one int.
But it could also be equalent to:

int ff(int itd)

i.e., ff takes one integer gument which we ge the (useless) name itd and surround with
redundant parentheseSection 6.7.5.3 of the C99 standard, item #11, states that if in a
parameter declaration the identifier could be either a typedef name or a parameter name,
it must be recognized as a typedef name, so the first interpretation is correct.

itd ff(itd (itd));

But wait, theres more!
typedef int t;

struct s {
unsigned t:4; //bit field named t is unsigned int
const t:5; /lunnamed bit field of type t

2

Within the structure definition atag which uses the bit field syntax, the first occurrence

of the identifier t declares a structure member namédcant be a ypedef name, since
usgned can not modify a typedef name (antigned by itself is a valid type name
which is the same assgnedit). Butin the next linet is a typedef name, which is
qualified by const, and the declarator is :5, an gmoous bit field of width 5.Again,
stylistically whitespace should appear between t andt:this is not reteant. Thefirst
instance of t does not obscure the typedef declaration t (from global scope), because
structure members are not in the same namespace class as typedef names.

If these typedefyxamples seem insane, it should be taken as a lesson in programming
language “"creep.'Many programming languages, such as C, start out simplgagle
and suitable for the purpose for whichyheere designed. As time goes, [gforts to
“iImprove" the language result in wesyntax. Often,complicated interactions among
these added features, and the original structure of the language, can ledatulh dif
situations which were not anticipated as each feature was added. Had the typedef
mechanism originally been added to the language by creatmgetw keywords, let us
saytypedef to create the typedef name, aymiref to use it, in the same manner as
struct/union tags, then the context-free nature of the grammar would vetbben
broken. Havever, this approach was rejected at the time becausastdesired to va
typedefs appear to be "first class" types which could be used in the manngt-gs b
types such ast . In retrospect this concern was a misplaced aesth&fjes created by

ECE466:Compilers Unid/pg 29 ©2025 JéHakner

typedefs are not first-class, since array types can not be made assignable by this
mechanism.

Type Algebra

We will now consider hw types interact with expression operato¥se an viev these
rules as a sort of type algebra, and we can systematically code routinelsidateethese
rules, using the AST representation of types.

Type Equivalence and Compatibility

The C standard uses the term "compatible types" in a slightly confuaypxgTwo types
are compatible if theare identical, or if thg are "close enough” to be egdient. This
concept is used whever two types interact with each othexg. in assignment.When
two non-identical types are compatible, the result composite typ&vhich represents a
compromise, of sorts, between theottypes. Determinatiof type compatibility for
complicated types can be performed resmetg) using simple rules:

Arithmetic types are compatible only if there the same type. long is not compatible
with short. signed int is not compatible with unsigned ifype qualifiers also break
compatibility: const int is not compatible with int.

Each enum definition is a distinct type and is not compatible with other enum types.
However, any enum type is compatible with int, and the result is that enum type.
Furthermore, since enums generally getvedrd to ints in ap expression, this is rarely

an issue.

Two array types are compatible if their element types are compatible, and if their sizes
are compatible too. The latter is defined as fadloif both array types define a specific
size, thg must be equal.However, if either or both sizes are not defined, ythare
compatible. Thecomposite of the tar aray types has an element type which is the
composite of the tavdement types. If either type defined a size, the composite has that

defined size. In C99, the array types can be qualified and if so the qualifiers must match.
extern int a[]; // But note int a[]; w/o extern is not valid!
extern int a[10];

main()

{

}
The redeclaration od is permitted if both arexen AND if the declared types are

"compatible." Thearray of unknown size is compatible with the array of specified size
(and their base types are compatible, in fact identical). The composite type is the array of
known size (10 elements) therefore sizeof(a) is defined and is 10*sizeof(int).

printf("%d \n",sizeof a); /I 10*sizeof(int)

ECE466:Compilers Unit/pg 30 ©2025 JéHakner

Two function types are compatible if their return types are compatible, and furthermore
their argument lists must be compatiblehe latter introduces some complicated rules for
mixing prototype and non-prototype forms of function type specifiers. The reader is
referred to the C standard. If both function types are in prototype form, the number of
arguments must be equal, the useafiable arguments must be the same, and each of the
arguments’ types must be compatible.

Each structure or union definition creates a distinct type which is not compatible with

anything else. Itis the tag, or a typedef alias, which captures this. Thus:
struct {int a;int b;} x;
struct {int a; intb;} y;

the types of x and y are not compatiblegrethough the elements are declared the same
way. Of course, when C programs are compiled from separate source files, the compiler’s
type checking systems are bypasséfdx and y abee were in separate .c files, it is
important that the code work as intended. The C standard guarantees that the compiler
will always lay out structure and union types in a consistey 80 he members will

always be in consistent places.

Two pointer types are compatible if their pointed-to types are compatible. The composite
type is a pointer to the composite of the pointed-to typesnters may be qualified (e.g.

a wnst pointer to an int, as opposed to a pointer to a const int) and if so those qualifiers
must agree exactly for compatibility to hold.

Conversions

Values of a certain type can be gerted to another type ingeral ways:

» An explicit cast expression

 Implicit corversions which happen to thegaments of manoperators (unarybinary
and assignment coersions)

» The cowersion of array and function types to pointer types in most expressions

* Implicit conversions of actual arguments to a function call

* Implicit corversion of return value from function (as if by assignment)

* An area of memory which contains a value of one type weteas being of a ddrent
type, either by mistakor on urpose.

Corversions between integer types do natolie any change to the actual bialues, as
long as the types are the same si&g. theexpression

a=(unsigned int)b;

where b was defined as just int, does nothing different from siasply When the
destination type is smaller than the source, the higher-order bits are discarded. This may
create a loss of information if the source value was outside of the smaller range of the
destination. Whethe destination is wider than the source, the higher-order bits are filled
with O if the source is unsignedytbif the source is signed, the most significant bit (the

ECE466:Compilers Unit/pg 31 ©2025 JéHakner

sign bit) of the source is extended to fill the higbeter bits. Most processorsvgaa
instruction to do this automatically.

Corversion of a floating point type to an integer results in truncation of the fractional
portion (not rounding!). E.g. 3.5 becomes 3 and -1.7 becomes -1. The floating point
source may exceed the range of the integer destination (e.g. 1e+20 can be represented in a
32-bit float, but not a 32-bit int) and the results are then undefi@edversion of an
integer type to floating point generally works out, but it is possible that the floating point
type is not precise enough to represent the integestlg A 32-bit float can hold the
entire range of a 64-bit long long (2**64 is approximately 16e+1BM the
significand/mantissa is not @& enough to hold it exactly (a float has 23 bits of precision
and a double has 53. It would &k bng double to hold the entire range of a long long
int with no loss of precision). Similar rules hold for versions between floating types

of different size.

Pointers may be coerted to intgers and vice-ersa. Itis not guaranteed that a memory
address (pointer) will fit into an int, oven a long. E.gthe model might be that ints and
longs are 32 bits, Ut addresses are 64lowever, in dmost all cases, there is some
integer type which can hold the pointer (long long in theviores exkample). Pointerand
integers are not "compatible types”, though, so implicitvemions between them
generate a warning, but explicit casts are Q¥ exception is made for the constant O,
which can alays be implicitly conerted to ay pointer type because it is the NULL
pointer.

C23 introduces aulpr t type, to fix some problem thakisted only in the minds of
standards writers. Refer to the C23 standard for the obtuse rgdedimg this type.

Pointers to different types may generally bevenied without ag actual changing of
bits. De-referencing pointer of one type as another type may produce undefined results,
e.g.
f0
{
Int a;
float *fp;

a=1;

fp=(float *)&a;

printf("%g\n",*fp);
}
The printf %g abwe is an &le of the last category of a@nsions mentioned
previously where a gien hit pattern in memory is viewed as another type. The result
will be garbage. Additionakompleity is introduced on architectures which impose
alignment restrictions on certain operatiohs the following example, the de-referencing
of the pointer may result in a run-time fatal error because the valuaffef Is not
necessarily aligned to a 4-byte boundary.
g(char *buffer)

{
long *Ip;

ECE466:Compilers Unit/pg 32 ©2025 JéHakner

Ip=(long *)buffer;
printf("%d 0,*Ip);
}
The C standard imposes an additional restriction that a pointer to a function can not be

corverted to a pointer to a variable or vicergsa. Thids because on some architectures,
function and wariable pointers may ka \astly different representations (e.g. a PIC
microcontroller). Havever, a unction pointer can still be ceerted to an intger, and
that integer coverted to a variable pointeso tie reasoning behind this restriction is
dubious. GCGnd Clang dort’seem to care about this restriction at all.

Casts

A type cast expression is used to force an expliciv@sion from one type to another
Arithmetic types can be freely cast among each otReinters can be cast to and from
integer types. Pointers to one type can be cast to pointers to another type, including
pointers to void, except that restrictions are imposed tepreasting between function

and variable pointers (but this can be circumvented by casting through an integer type).
Casting ag type tovod means discarding itsalue. structuresunions, arrays and
functions can not be castype qualifiers can also be castag.

Function/Array Pointer Equi valence

An expression of type array of E is eerted to a pointer to E invery context except:
» When the array is the argument to the & (address-of) operator

» When the array is the argument to the sizeof operator

* When a string literal (which is really an array of char) is used as an initializer.

This corversion could be stated in another way: in most contexts, the name of an array is
really the address of its first element. The reason for this is that arrays are not "first class
types" but are really a syntactic @enience to hide pointer arithmetic. The C
implementation of arrays makes perfect sense to assembly language programiniers, b
confusing to just abouteryone else.

An expression of type function is ogmnted to a pointer to function invery context
except as the operand to the & or sizeof operators (furthermore ivasdino apply
sizeof to a function name)One could also say that this eersion does not takpace
when the function name is used to call the function, or one could say thersoom
happens and thatOK because a function can be called with a pointer to a function too.
Again, another @&y of saying all this is that a function name is really the address of its
first machine-language instruction.

The "shielding" effect of sizeof and & extends only to tlxpression which is the
immediate operand of the operatdt does not recurse to deepevdis of the &pression

ECE466:Compilers Unit/pg 33 ©2025 JéHakner

or the type.

Let us examine some cases:
main()

{
int a[7];

}

The variable a has type array(7,inkj). the first case, a is the direct operand of sizeof, and
thus its type is not ceerted to a pointersizeof(int [7]) is 7*sizeof(int), or 28 on a 32-bit
architecture. Irthe second case, a appears as the operand of the + opHgatgpe is
therefore cowerted to pointer(int). As we’ll see later in this unit, when the addition
operator has operands of types pointer and int, the result is the pointeiThgrefore

the second printf output is sizeof(int *), or 4 on a 32-bit architecture.

printf("%d %d\n",sizeof a,sizeof(a+0));

We @n visualize the ay a compiler could perform this "type algebra" using an.AST
The solid portions represent the AST as constructed from tloe paksed sizeof
expressions. Wheit comes time to \eluate thevalue of szedf , the compiler must
determine the actual type of its operaridcan do so by recussly exploring the AST
applying various rules.

ECE466:Compilers Unid/pg 34 ©2025 JéHakner

' typeof + operator when
y operands are PTR/INT i
the PTR type.

typeof ~. R
sizeof operand. _ L ! typeof
(remains ARY RN VARIABLE 4/ +operand
because conversion . /' becomes PTR
not applied \ a ’ toint

to sizeof operand) \

The type of the xpression&a would be pointer(array(7,int)), not pointer(pointer(int)),
because a, as the operand to the address-of opatadsr not get carerted. Thisis

important for multi-dimensional array pointer arithmetic:
int b[8][10];

int c[4][5][6];

main()

{
printf("%p %p %p %p\n",b,&b+1,b+1,*b+1);

printf("%p %p\n",c,*c+1);
}
The type of variable b is array(8,array(10,inthonsider the four uses of b in the printf.
In the first case, b is subject to wersion, and the outer array type becomes

ECE466:Compilers Unit/pg 35 ©2025 JéHakner

pointer(array(10,int)). @ analyze the next use, recall (or read ahead to learn) that the
expression p+i, with operands i and p of type gete and pointer(T), respeatly,
computes p+i*sizeof(T). In the expression &b, the variable b is not subject to type
corversion as the operand of the address-of operaldrerefore it has a type of
pointer(array(8,array(10,int)), and thalwe computed is 8*10*sizeof(int)*1 greater than
the base address of In ather words, it correctly computes the address of the "next" int
[8][10] array beyond b.

In the third case, b’'type does get comrted to pointer(array(10,int)), and thepeession
vaue is 10*sizeof(int) beyond the base address,the.address of the seconavrof the
array b.

In the fourth case, B'type is comerted to pointer(array(10,int)), and is the operand of the
dereference (*) operatowhich tales operands of type pointer(T) and results in a type T
Therefore the subexpression *b has type array(10,Bi)T, this subexpression which is
an operand to + is also subject to array-pointevasion, and therefore the operands to
+ are of type int and pointer(int), and the address is incremented by just one element.

In the second printf, ¢ is of type array(4,array(5,array(6,int}))is corverted to
pointer(array(5,array(6,int)). Aftehe * operator the type is array(5,array(6,int)). This is
now subject to cowersion again, but note that only the outermost array typdastad,

and the type becomes pointer(array(6,int)). The address is incremented by 6*sizeof(int).

Array/pointer comersion does not takgdace when a string literal is used to initialize an
array variable

char a[]="hello";

char *p="goodbye";

The array dimension of a is unspecified, but because of the initidheetype of a is
(char [6]), allowing an extra byte for the NUL terminatén the second example, the
string does not initialize an array variable, and is promoted to a polnt&&R C, an
initialized array declaration was allowed only when tlagiable has extern or static
storage class, but C-89 and C-99wlkbe initialization in all cases. This leads to some
unfortunate inconsistency:

f0

{

char a[]="allowed";
char b[8];
b="denied";
}
Both a and b areaviables ofauo storage class. The initialization of a requires the

compiler to generate code similar to:
char a[8];strcpy(a,"allowed");

But if we miss the opportunity to initialize the array during declaration, that opportunity
is lost forerer! The string "denied"” is promoted to (char *), and the variable b is also
promoted, bt since array names areveelvalues, the assignment is an errdn other
words, while initialized declarations seem to be similar to a declaration followed by an

ECE466:Compilers Unit/pg 36 ©2025 JéHakner

assignment, theare not totally equiaent! This will become gen more evident with
respect to global variables when we explore target code generation and the linker model.

Expressions and Types

WEe'll conclude the unit by looking at each operator in the C expression gramithaain

eye towad howv the expression affects the type "algebrdbn’t worry, we’ll be
revisiting expressions again in Unit 5, when we need to talk about code generation for
each operator.

Before we dele further let's look at some issues that are common toynogerators.
Lvalues

The termlvalue is used frequently in the C standard, and often witkerg confusing
definition. Anvalue in an &pression is said to "be" an Ivalue if we can assign ténit.

other words, the "I" stands for "left* and we are concerned with whether it can appear on
the left side of an assignment. In the next unit,Ivalk about "finding the Ivalue" of a
subexpression, which means determining where wni® assign to it.

Side-effects

An expression is said to produside-effectsif it could possibly modify the value of
some object someéhere, i.e. includes ++ or -- operators, assignment operators or function
calls. If an expression statement produces no side-effects, sugh atkhen a varning

may be generated unless the expression value is explicitly ¢ag) to.

Unary and Binary Arithmetic promotions/conversions

Thent type is defined as the "natural” register size forvangarchitecture. Orboth
X86-32 and X86-64, the int is 32 bits lon@ut there hae keen other architectures
where int is 16 bits, and on some pure 64-bit architectures, ints will be 64.

Integer arithmetic operations are "naturally" performed in assembly language using this
int size. Adding tw chars together as an 8 bit operationtisny faster or cheaper than
doing it at 32-bit precision, because the ALU and tlggsters are 32 bits gway. In an
expression, values of irger type smaller than int (short, char) are implicgipmoted

to int. This reduces the comgley of the code which the compiler must generate for
expressions.

One thing which ANSI C "broke" uwolves promotions of unsigned short and unsigned
char In K&R C, these were promoted to unsigned int, but in Standard €,atke

ECE466:Compilers Unid/pg 37 ©2025 JéHakner

promoted to int, as long as int is strictly wider than the original type and can thus
represent the entire rang&he problem with this is that the expression then loses its
unsignedness, which can sometimes be a problem.

K&R C promoted floats to doubles, but ANSI C doésequire this. Unlike integer
operations, it is quite lady that single-precision floating point operators are indastf
than double, so if the programmer isasking for the additional precision, wido it?

When a binary operator is presented witlo subexpressions of differing types, one of

them must be promoted before the operation makes sense. So, after performing the unary
promotions described abg if the types are still different, the "lesser"” type is promoted.

E.g. whenadding a double to an int, the int is promoted to double, the operation is
conducted as a double, and the result is of type doukdeling an int to a long long
results in promotion to long long.

The rules of binary promotions are somewhat complicafedsigned int) OP (signed

int) results in (unsigned int)But (unsigned int) OP (signed long) results in (signed long)
because the latter is a "bigger" or "higher ranking" integer type. This behavior also
changed from K&R to ISO C or C9Many C programmers do not fully understand the
promotion rules. If uncertain, it is best to use explicit casts.

In classic C without prototypes, the actual types of tgaraents are not known when the
compiler sees the function calllo amplify argument marshalling, classic C promotes
floats to doubles, and promotes char and short as describesl &iv@andard C, with a
prototype in effect, these promotions are not required to be perforiies.is a good
optimization for floats, as discussed @ddout not so important for integer types. brcf,
most implementations will promote char and shaguarents ayway. If the function has

a prototype that specifiesaviadic arguments, those arguments mustysd be promoted
because their type is not known.

Primary Expressions (Level 16)

« IDENT: if the name of a variable, this is amlive, unless the variable is of array type, in
which case the expression is gemned to a pointer to the element type and is not an
lvalue. Thiscorversion doesn’ happen if this primary expression is the operand of a
sizeof or & operator Technically a variable of array type is andiue (it has storage
associated with it and we can ¢aiks address), but because of this defaulve@on to a
pointer type, this distinction really doesmiatter.

The name of a function is also e@rted to a pointer to a functioxeept when applied to
sizeof or &. Again, this distinction is a hasplitter, since sizeof a function is notird,
and there is no reason to use & on a function name other than style.

If the identifier is the name of an enum constant, then xipisession has the value of that
constant, and an integer type of the comglenoosing (generally just int). C23 als

ECE466:Compilers Unit/pg 38 ©2025 JéHakner

the specific integer type to be chosen, but enums are still ints. enum constanie can’
lvalues.

Other uses of an identifier (tags, members, labels, typedef names) are not a primary
expression.

* literal: Integer, floating-point, character and string literals are all primagressions.

Their type is inferred from their lexical pattern, including possible modifiers sudh as

and (in the case of integers) by their value in relation to the rangdugiswepresentable

by each scalar type. string literals are of type array of, dhrthey are comverted to

pointer to char in all casegaept as the operand to a sizeof, operand to &, or when being
used to initialize an array of chalt is implementation-specific whether a string literal

can be modified.
char *s="ABC";s[0]="X"; /I Produces a SIGSEGV on most UNIX implementations

In the example abe, the compiler does not flag an efrdwut at run-time a dtal
exception is raised (SIGSEGV), at least on most UNIX implementations, becayse the
place string literals into the read-only program text.

e (eqx) : Parentheses do nothing, the value and type is that of the enclosed
expression. Thegare used for style or to escape the normal precedence and agspciati
rules. Typically in building an AST for anx@ression, one would noven bother with an
explicit AST node to represent parentheses.

Postfix expressions (also Leel 16)

«elle?] : An array subscripting expression is definedeaactly equivalent to *el+e2)

Since addition is commuta#g, this imples thatel] is also equialent, although that
would be stylistically strange. el must be a pointer type, and e2 must beggnr tgjee,

or vice-\ersa. Asa result of the implicit binary + operatahe usual binary promotions

and conersions are applied to el and e2. See discussion of the + operator and pointer
arithmetic. Ifthe pointer type is "pointer to T", the result of the subscriptession is

type "T". The result is alays an Ivalue.

» eLIDENT : el nust be of struct or union type and the definition of that type must be
complete. IDENTmust be a member within that typ@&he result is of the type of the
member If either the member or el va qualifiers, the result type is the inclusior of

those qualifiers. The result is an Ivaluieeit is an Value (struct and unions returned by a
function are not lvalues).

* e1->DENT : This is exactly equialent to(el)IDENT

* Function Call: The type of thexpression appearing to the left of the parentheses which
surround the (possibly empty) actual argument list must be "pointer to functi@ince

an expression of function type gets wated to a pointer to a function, this works as
intended. lialso means that\gn a function pointerit is not necessary to ugeexplicitly

to call the function, although it is usually good style to do $be arguments are
corverted as if by assignment to the types specified in the prototype, but arguments in the
variable portion of the prototype are subject to the usual promotions discussegdasbo

ECE466:Compilers Unid/pg 39 ©2025 JéHakner

are ay arguments of a function called without a prototype visible. Calling a function
using an undefined symbol F results in implicit declaration of that symbol as int F(), as
discussed in an earlier sectiofThis usage is deprecated by C23) The result type of a
function call expression is the return type of the function, andvis ae value.

» e++: e must be a modifiable &lue of intger, enum, real or pointer type. The effect of
this expression is similar tgemp=eet=1temp) , with the important praso that the
expression e is onlyvaluated once.e is subjected to the binary ceersions because of

the increment, and the assignmentweosions when storing the result back in Ene

result type is the type of e (beforeyanorversions) and is nex an value. E.g.
char c; printf("%d",sizeof(c++));

prints 1, because the result type is chat int, ezen though the increment occurs in the
int type.

e- :see abwoe

* Compound literals: C99 introduces a way to create a literal pfaggregae type
including struct, union or arrayThis is actually somewhat handylhe syntax is
documented in the C standard and Harbison & Steele. The result is an Ivalue and is
modifiable unless a const qualifier is use@ompound literals are approximately
equvalent to having declared a variable of the same type with an initializer and then
forgetting the name of that variable after it is used in an expression.

Unary Expressions (Level 15)

* szedf(type_name) andszeofexr : The sizeof operator returns the size, in bytes,
of the gven expression or of the gen type name. The return typegge t , which is a
typedef defined istdoefh . This type is an integer Ige enough to represent theglast
possible object. On 64-bit architecturgz t is going to be &nglong , At one time,
the thought of a single array exceeding 2GB was somewhat, oarpday might be
seen in lage applicationssze t is not a ne scalar type, and its correspondence to an
actual type such az is something which is fed into the compiler when the compiler
is built for a specific target architecture. The result of sizeofusrran lvalue. Aswith
casts, the type_name could include struct, union or enum definitions which could be
referenced later as long as a tag wagmgibut this is considered poor styld.eqx is
given, it must be a valid expression, but it is N@valuated (but see belo about
variable-length arrays)The usual coversions do not apply to the topvkt operand, bt

they do to ay inner expressions:
char c;
intil,i2;
i1=sizeof(c); / parens redundant
i2=sizeof(c+1); // parens needed for order of ops
i1 has the value 1, but i2 has the value 4, because c is promoted. Note that parentheses
are not required when theqr form is used. However, mary programmers hzae

difficulty remembering all 16 precedencede and use them for clarityit is an eror to

ECE466:Compilers Unid/pg 40 ©2025 JéHakner

apply sizeof to anxpression or type name with an incomplete type. Before C99, the
vaue of sizeof vas truly constant and known at compile-time. When Ca8ally-
modified abstract array types are used with sizeof, the length control expression will be
evduated:

main()

{

intij;

i=1;
j=sizeof(char [i++]); //side-effect in control expression!
printf("i=%d j=%d\n",i,j); /liis 2,jis 1

}

However, this example:
main()
{ . .

inti;

i=1;

char a[i++];

printf("%d %d\n",sizeof(a),i);

printf("%d %d\n",sizeof(a),i);

printf("%d %d\n",sizeof(a),i);
}
gives inconsistent results depending on compilersion. Itshould printl 2 each time,
because the size control expression should onlywéleatded once, when the variable is
declared. Buthe C standard is unclear on this. It says that the operand of sizeof is not
evduated, unlessit is of a \ariable length array type. Modern versions of GCC and
CLANG do not increment theaviable i three additional timeslhey implement VLAS
like this:
{

/I What you said:

char a[i+j+k++];

/ What it did:

size_t __ hidden= i+j+k++;

char *a=alloca(__hidden);

/I And therefore, when we see sizeof(a), we substitute __hidden

}

Aren't variable-length arrays a wonderful feature?!

Szeoi(\vo) is defined as 1, becauseivad ¥ is the basic "pointer to memory"
(whereas in classic C it wagdaar®)) and pointer arithmetic has toork. Butthevod
data type cam’ be he base type of an arfaya druct/union member or a
variable/parameter.

o te

- : Unary plus and unary getion require an operand of yarithmetic type. The result
has the same type as the operand (after unary promotions) angri@mdvalue. The
usual unary promotions are applied to the operddde could debate the utility of the

ECE466:Compilers Unit/pg 41 ©2025 JéHakner

unary + operator and indeed it did not exist in classic C.

» le: Logical NOT performs the usual unary promotions anddsntical to =0 .
Therefore the result is of type int, and the operand may perdimmetic or pointer type.
The result is neer an value.

e : Bitwise NOT requires an operand of iigi&al type. The usual unary promotions are
performed. Theesult is of the (possibly promoted) type of the operand andves ae
lvalue.

* &: The operand must either be an Ivalue or a function or array type. If the operand is of
type T, the result is of type pointer ta TThe usual coversions and promotions are not
applied to the top-lesl operand. Notehat if variable a is of type array of king &a
yields type "pointer to array of T" but just the identifeeis "pointer to T' This does
make a dfference when it comes to pointer arithmetic. It i&lid to apply the address-of
operator to a variable of register storage class, althougi coampilers will allov it with

a warning. Applying& to a function is somewhat superfluous since function types are
normally cowerted to pointers anyway.

** : The operand must be of type pointer t@Td the result is of type. TThe result is an
lvalue unless T is a function or array typkhe usual unary cerrsions are applied to the
operand. Ilfais an aray typeja is equvaent tod(] .

°—€

+e: These pre-increment and pre-decrement operators require a modifiakie Iv
operand and their result isvee an value. The are equvalent toe=1 andet=1.

Casts (Level 14)

(e name)e : An explicit cast comersion, as praously described.iype name is an
abstract declaation, which has the same syntax as a regular declaration but omits the
identifier which would normally be declared. Abstract declarations may contain
gualifiers such as const, but yhean not include storage class specifiers, onytedef
keyword.

The result of a cast is w& an value and has the typgoe name . Casts are listed at
precedence 14, while all other Unary Expressions are at 15. This resolves a potential
parsing ambiguity:
sizeof(int)*p

is NOT sizeof ((int)*p))

it1S (sizeof(int))*p

Whentype nameontains a variably-modified array type (C99 and later), the size control
expression iseuated at run time:

ECE466:Compilers Unit/pg 42 ©2025 JéHakner

main()
{
int i=0;
intj;
void *p;
p=(char (*)[i++]) j;
p=(char (*)[i++]) j;
p=(char (*)[i++]) j;
printf("%d\n",i); I* Prints 3 */
}
Multiplicati ve expressions (Leel 13)
e el*e?
eel/e 2

* el % e2: Each operand must be of arithmetic type. The unary promotiorersions
are performed on el and e2 to widen integers small than int, then the binaangsicnis
are performed to promote el or e2 to the greater common typg drthaot already the
same type. The result is of this type and igenan halue.

Additi ve expressions (Leel 12)

s el+e?

*el-e . The same unary and binary eersions are applied as discussed for
multiplicative goerators immediately alke. The operands may both be arithmetic types,

or one operand may be of pointer type (it can not be a pointer to a function, a pointer to
void, or a pointer to arthing else whose size is not known) and the other of integer type.
In the latter casegyointer arithmetids performed.Let us say el is the pointer type and e2

is the integer type.For addition, the actual value of the pointevhich is a memory
address, is incremented leg‘szeoiel) . For subtraction, it is decremented.he
resulting type is the pointer type.

For subtraction onlyBOTH operands may be pointers to the same (or compatible) types.
Then the resulting memory addresfelis?)szeoiel) . This is not exactly he the
standard defines it, but it iswwdahe compiler will probably implement iif either pointer

is not really pointing at an object of the appropriate type, the results are not dé&fiveed.
result type of subtracting twpointers is of typegodif t , which is going to be an
integer type large enough to holdyamemory address. As witlize t , pidiff t is an
architecture-specific typedef (to some kind of int type) The result of an vedditi
expression is ner an hvalue.

If el or e2 is of an enum type, the truth isythee really some kind of ingger. enums in
C aen't first-class types:

ECE466:Compilers Unid/pg 43 ©2025 JéHakner

enum junk {
peter=1,cooper=3,hewitt=5
} ee;

main()
{
ee=peter;
eet++;
printf("%d\n",ee);
}
If they were, incrementing peter by 1 should result in coapmt?

Shift expressions (Leel 11)

e el<e?

«el>e?2 : Each operand must ta integer type and the unary promotions are applied to
each separatelyThere is no need to perform binary gersions to promote the operands
to a common type. The result type isverean value and is of the (possibly coarted)
type of the left operandResults are undefined if e2 isgagve. The actual operation is
different depending on whether el is signed or unsigned.

Relational expressions (Leel 10)

e el<e?

cel>e2

s el<=e?

e el>=e2 : The operands must be iger or real types, or pointers to the same or
compatible types. The binary cansions are applied. The result is an int which is either
0 or 1 ad is neer an lvalue. For comparisons between integers, signedness matters, as
we shall see when we study the assembly language which must be erSitiee.
compilers will catch an error such &§K0) whereu is an unsigned int. The C
standard xplains rules for comparisons between pointers which are vgloate
theoretical. Inmost architectures, the pointers are compared as\ifWeee unsigned
integers of the appropriate width.

Equality expressions (Leel 9)

cel=—e2

*elk=e2 : The usual binary caersions are performed on the operands, which may be

of ary arithmetic type, or pointers to same/compatible types. Pointersyofype may

always be compared against a void *, or against the constant 0. structs and unions can
not be compared, although yhean be assigned. (The reason is that because of padding
issues (to be a@red in a later unit) tew Sructures or unions may Y& identical member

ECE466:Compilers Unid/pg 44 ©2025 JéHakner

vaues, but their memory images may differ in the paddimgores.) Theresult of an
equality expression is an int which is either 0 or 1 andverran alue.

Bitwise expressions (Leels 8, 7, 6)

o el&e?

cel’e?

e el|e : These are listed in decreasing order of precedence. The usual binary
corversions are applied to the operands, which must be of integer Tyy@eresult is not

an halue. Inthe authors gpinion, the bitwise operators shouldvleareen placed alve

the relational and equality operatoGonsider f([&}0F=3) , this compares OxOF to 3

and then bitwise AN the resulting 1 or O with the integerThis is almost neer what

is desired! Unfortunately it auld be a little late and cause a lot of confusion to change it
Now.

Logical expressions (Leels 5, 4)

e €1&&€e2

*el|e2 : The && operator has higher precedence. These operators are sometimes
called "short-circuit” operators because it is possible that e2 will noteheated if the

result can be determined solely from el (i.e. el is zero for && or non-zero fohi$)is

put to good use with C idioms such as

char *p;

I*..x

if (p && p[0]'="A")

The operands to && and || are each subject to the usual unary promotions (not binary
promotions!) anatan be of ay arithmetic or pointer type.They are compared to O as if

by the == or != operatorNote the implicit comparison between a pointer and NULL

above. The result of the && or || operators is an int and igenan halue.
Ternary expression (Level 3)

» e1?e2e3 . No ather language before C had anythingelike ternary or conditional
operator! elmust be arithmetic or pointer type, and is compared to O as if by the ==
operator If el is ron-zero, then e2 isvduated and that becomes the result of the
expression, otherwise e3 igauated. Onlyone of these expressions \@leated. Ifboth

contain side-effects, only the side-effects of the selected expression happen. e2 and e3
can be of aptype and are subject to the usual unarywemions. Ifthey are not of the

same type, the rules are somewhat cormpleasically thg must be compatible as if by
assignment, so thgressiore=bcd has to verk. Referto the C standard ddarbison

& Steele pg. 245. The result of the ternary expression is not an Ivalue, although C++
allows(c?abrvy , as dosme GCC C compilers.

ECE466:Compilers Unid/pg 45 ©2025 JéHakner

Assignment expressions (Leel 2)

»el—e?

e el+=e2
cel=e2

o el*=e?
celFe2
*e1%=e2
cel™=e2
celfFe?
*el&=€e?

e el<<=e2
«el>=e2 : All of the assignment operators are at the same precedertand are
right-associatie.

el must be a modifiable Ivalue and can not be qualifiedy .

The compound assignment operators are similar to a simple assignment combined with
the binary operatpre.g. a+=bis similar to to a=a+b Howeve, there is an important
caveat: The expression a will only beatuated once. This becomes important if there

are side-décts. San Xiy)H== the function f must only be called once.

el and e2 are not subject to integer promotions. therefore
char *pl,*p2;
*pl = *p2; /I Only one byte is moved, not a whole int

If the types of el and e2 are not identical, an implisignment comersion takes place,

as if e2 had beerxplicitly cast to the type of el. If this cast would not be permitted as
an explicit cast, then the assignment isialferror In some circumstances, the implicit
assignment comrsion raises a warning, but thatming can be circumvented by an
explicit cast. Some examples belo

The resulting type of an assignment is the type of el. The resultasareivalue. In

very early \ersions of C, structs and unions could not be assigned. This is no longer the
case, bt the assignment operator still can not be used tyg aophole array This is
because if el is of array type, the usualemsions are applied, making it a pointer type
which is not an Ivalue.

As an interesting aside, in very early versions of C, compound assignment operators were
reversed. E.ga=t3, . This was borrowed from the predecessor language B andwut do

on the complexity of the compilewhich was being hand-coded. Of courgeh now
becomes ambiguous because it might alsoab# . The former is a compound
assignment operator and the latter is a simple assignment and a pointer derefdrsnce.

ECE466:Compilers Unid/pg 46 ©2025 JéHakner

form of compound assignment was deprecated in the 1980s.
/* Examples of assignment conversions */
int i,*pi;

unsigned int u,*pu;

unsigned char uc;

const int ci,*pci;

volatile int vi,*pvi;

float f;

struct sl {int a,b;} sla,slb,*psi;

struct s2 {int a,b;} s2a,*ps2;

int a[10],(*pal0)[10],(*pas)[S],(*pau)[l;

void *vp;
void z(void)
{
f=i; I No problem, but potential loss of precision
i=f; I No problem, but potential loss of range
uc=i; I No warning, but potential loss of range (discard high bits)
pi=pu; I Warning int != unsigned int
u=i; I No problem, but garbage if i<O
i=ci; I No problem
ci=i; I ERROR: can't assign to a const qualified type
(int) ci=i; // ERROR: nice try, but casts are not lvalues
*(int *)&ci = i; /I OK, if you insist!
pi=pci; // Warning, discarding qualifier from type underlying pointer
pi=(int *)pci; /I OK with explicit cast
pi=pvi; /I Warning, discarding qualifier from type underlying pointer
palO= &a;// No problem, identical types
pau=pal0;// No problem, int[] is compat with int [10]
pa5= &a; // Warning, int[10] is not compat with int[5]
pi=i; /1 Warning, implicit cast from integer to pointer
pi=0; I No warning, always ok to assign O to a pointer
pi=z; I Warning, conversion of function ptr to int ptr
vp=z; I No warning, void * is the "universal pointer"
sla=slb; // No problem
sla=s2a; // ERROR: can't assign different struct tags
sla=(struct s1)s2a;// ERROR: can't cast them either
psl=ps2; // Warning: pointers to different struct types
}

Comma Expressions (Leel 1)

* ele? : The comma, or sequential operator is also amntion of C. el is fully
evduated. Aly value which it may produce is discarded,t(Bide-effects still happen)
then e2 is ewduated and the result is the value of therall expression. Therés no
requirement that el and e2 be of compatible typée result type is the type of e2 and is
not an halue. Harbisor& Steele says that unary cgmsions are applied, but the current
ISO C standard does not, and gcc seems tonfdhe latter e.g. Szedf(iC) where i is

ECE466:Compilers Unid/pg 47 ©2025 JéHakner

anintand cis achas 1L

Note that syntacticallya mmma expression is at the towdkeof the definition of an
expression. Therare places in the grammar where an expression is permitted but this
could cause confusion with other uses of the comma token, and therefore in those places
the grammar specifies an assignment_expression (i.e. startingehR).e Theseplaces

are function calls, enumeratioalue declarations, initializers, bit field length specifiers in
struct/union definitions.

