Programming Massively Parallel
Processors

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Why Massively Parallel Processor

e A quiet revolution and potential build-up
— Calculation: 367 GFLOPS vs. 32 GFLOPS
— Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
— Until last year, programmed through graphics API

1200

&=® AMD (GPU)
=l NVIDIA (GPU)
1000 - | @=@ 1nte| (CPU)

800

GFLOPS

600 -

400 |

200

cdual-core

Foo1 2002 20 2004 2005 2006 2007 2008 2009
— GPU In every PC ana workstation — massive volume and potential
impact
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 2

ECE 408, University of Illinois, Urbana-Champaign

CPUs and GPUs have fundamentally
different design philosophies

HNEENEEEEEEEEE
GPU
HNEEEEEEEEEEEE

O] Bf Bf 8| Bf 81 8 B

DRAM

DRAM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 3
ECE 408, University of Illinois, Urbana-Champaign

Architecture of a CUDA-capable GPU

]

! : !

! : !

Global Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 4
ECE 408, University of Illinois, Urbana-Champaign

GT200 Characteristics

« 1 TFLOPS peak performance (25-50 times of current high-
end microprocessors)

o 265 GFLOPS sustained for apps such as VMD
o Massively parallel, 128 cores, 90W
o Massively threaded, sustains 1000s of threads per app

* 30-100 times speedup over high-end microprocessors on
scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so | have to be careful what | say
publically until I triple check those numbers.”

-John Stone, VMD group, Physics UIUC

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 5
ECE 408, University of Illinois, Urbana-Champaign

Future Apps Reflect a Concurrent
World

 Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”

— Molecular dynamics simulation, Video and audio coding and
manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

—These “Super-apps” represent and model physical,
concurrent world

 Various granularities of parallelism exist, but...

— programming model must not hinder parallel implementation
— data delivery needs careful management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 6
ECE 408, University of Illinois, Urbana-Champaign

Stretching Traditional Architectures

 Traditional parallel architectures cover some
super-applications
— DSP, GPU, network apps, Scientific

* The game Is to grow mainstream architectures
“‘out” or domain-specific architectures “in”

— CUDA 1s latter

[Traditional applications

D Current architecture
coverage

|| New applications

-=..-. = J_"
© David Kirk/NVIDIA arfJWen-mei W. Hwu, 2007-20
ECE 408, University of Illinois, Urbana-Champaign

- (QObstacles 7

Samples of Previous Projects

Application | Description Source | Kernel | % time
H 264 SPEC “06 version, change in guess vector 34,811 194 35%
SPEC “06 version, change to single precision 0
LB M and print fewer reports 1’481 285 >99 /0
RC5-72 Distributed.net RC5-72 challenge client code 1 ’ 979 218 >0904
Finite element modeling, simulation of 3D 0
FEM graded materials 1’874 146 99 /0
Rye Polynomial Equation Solver, quantum 0
RPES chem, 2-electron repulsion 1’104 281 99 /0
P NS Petri Net simulation of a distributed system 322 160 >99%
Single-precision implementation of saxpy, 0
SAXPY used in Linpack’s Gaussian elim. routine 952 31 >99 /0
TRACF Two Point Angular Correlation Function 536 98 96%
Finite-Difference Time Domain analysis of 0
FDTD 2D electromagnetic wave propagation 1’365 93 16 /0
Computing a matrix Q, a scanner’s 0
MR 7 nonvio1h eptisoramomsirmrriaesieuction 490 33| >99%

—or—

| -y - %U UIIIVUIJI _y LI LLLL

VTS, UTiuriaroriarnipargri

Speedup of Applications

210 457 316
79 431 263

(o))
o

| m Kernel
| B Application

o
AN

o

o

GPU Speedup
Relative to CPU
= DN 8 S o1

o

o

H264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-

e GeForce 8800 GTX vs. 2.2GHz Opteron 248 i

» 10x speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

o 25x to 400x speedup if the function’s data requirements and control flow
suit the GPU and the application is optimized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 9
ECE 408, University of Illinois, Urbana-Champaign

GPU HISTORY

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

10

CPU

GPU

A Fixed Function
GPU Pipeline

© David Kirk/NVIDIA
ECE408, University of I

11

—_— W

‘“ DGy

texture iImage

-y ——

Texture image

Texture mapping example: painting a world map
texture image onto a globe object.

sphere with texture

1, 2007-2010 12
ECE408, University of Illinois, Urbana-Champaign

Anti-Aliasing Example

. EEEEEEEEE
o

@

@

@

@

*

@

o

@

. EEEEEEEEE SEEEEEEEE
Triangle Geometry Aliased Anti-Aliased

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 13

ECE408, University of Illinois, Urbana-Champaign

Programmable Vertex and Pixel
Processors

3D Application

or Game
3D API
Commands
\ 4
3D API: C P U
OpenGL or
Direct3D
CPU — GPU Boundary
GSU Assembled G P U
Command & Polygons, Pixel
Data Stream v Vertex Index Lines, and Location Pixel
GPU Stream Points Stream Updates
Primitive Rasterization & Raster =
Front > > X —> X » Framebuffer
End Assembly Interpolation Operation
A S
Pre-transformed A
Vertices ‘ q Rasterized ‘ q
Traqs ormed pra_transformed Transforme
Vertices Fragments Fragments
Prog\;ar?mable Programmable
ertex Fragment

Processor Processor

An example of separate vertex processor and fragment processor in

rogrammable graphi ipelin
© David Kirk/NVIDIA and Wen-maéi e/ gv% 28(307-2019b € g ap CS p pe € 14
ECE408, University of Illinois, Urbana-Champaign

Unified Graphics Pipeline
*

—_— [==

! ! !

[se][Jf (seil_Jf W {(seI) seIC 1) B eI (el Jf sl I (seilJf lsell_HiseIC 1) @ lseIl (el R lse
IR A T T
IR A T T
I |0 0 ¢

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 15
ECE408, University of Illinois, Urbana-Champaign

O

Input Registers

l

Fragment Program

l

per thread
per Shader

Constants

Temp Registers

Output Registers

The restricted input and output capabilities of a shader programming model.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

16

CUDA PROGRAMMING
MODEL

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

17

What i1s (Historical) GPGPU ?

* General Purpose computation using GPU and graphics API
In applications other than 3D graphics

— GPU accelerates critical path of application

« Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism EEG P U
— Low-latency floating point (FP) computation

* Applications — see //GPGPU.org

— Game effects (FX) physics, image processing

— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 18
ECE 498AL, University of Illinois, Urbana-Champaign

Previous GPGPU Constraints

« Dealing with graphics API
— Working with the corner cases of the
graphics API

o Addressing modes
— Limited texture size/dimension

o Shader capabilities
— Limited outputs

 Instruction sets
— Lack of Integer & bit ops

e Communication limited
— Between pixels
— Scatter afi]=p

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Input Registers

!

§ — Temp Registers

l

Output Registers

19

CUDA

« “Compute Unified Device Architecture”

o General purpose programming model
— User kicks off batches of threads on the GPU
— GPU = dedicated super-threaded, massively data parallel co-
processor
o Targeted software stack
— Compute oriented drivers, language, and tools

 Driver for loading computation programs into GPU
— Standalone Driver - Optimized for computation
— Interface designed for compute — graphics-free API
— Data sharing with OpenGL buffer objects
— Guaranteed maximum download & readback speeds
© bavid kirNZS G e R mesy2enanagement

ECE 498AL, University of Illinois, Urbana-Champaign

http://www.opengl.org/
http://www.opengl.org/

An Example of Physical Reality

) Intel* Pentium® 4 (hOSt)
GPU w/ Extronme Edfion
local DRAM [oacen
. (device) i

Intel® High
Definition Audio

4 PCI
Express® x1

8 Hi-Speed

USB 2.0 Ports

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 21
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Computing on a GP

o 8-series GPUs deliver 25 to 200+ GFLOP SN
on compiled parallel C applications
— Available in laptops, desktops, and clusters

o GPU parallelism is doubling every year

* Programming model scales transparently
Tesla D870

 Programmable in C with CUDA tools

o Multithreaded SPMD model uses application
data parallelism and thread parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 TeslaS870
ECE 498AL, University of Illinois, Urbana-Champaign

Overview

 CUDA programming model — basic
concepts and data types

 CUDA application programming interface -
basic

« Simple examples to illustrate basic concepts
and functionalities

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 23
ECE 498AL, University of Illinois, Urbana-Champaign

e DParfnrmanca faatiirac will he conrarad Iatar

CUDA — C with no shader

limitations!
* Integrated host+device app C program

— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
Parallel Kernel (device) > §:> 3 | | SR> §}> x>
KernelA<<< nBlk, nTid >>>(args); ‘ S 5
Serial Code (host) g
Parallel Kernel (device) S || D | | SRS SR
KernelB<<< nBIlk, nTid >>>(args); > |

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Devices and Threads

e A compute device
— Isa coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Istypically a GPU but can also be another type of parallel processing
device
« Data-parallel portions of an application are expressed as device
kernels which run on many threads

e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
» Very little creation overhead

— GPU needs 1000s of threads for full efficiency
» Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 25
ECE 498AL, University of Illinois, Urbana-Champaign

G80 — Graphics Mode

e The future of GPUs is programmable processing
e So - build the architecture around the processor

!

L X
Pl (sell_J| f{(sell i [sell]
L] LI
N T
LI IC eI

[se][_1f {(s=I[_1| @ iseI)fisIC) fjisel) flseI
N
N
N

ECE 498AL, University of Illinois, Urbana-Champaign

G80 CUDA mode — A Device Example

* Processors execute computing threads
* New operating mode/HW interface for

Host

compuring

Input Assembler

'

v 4 4 { 4 4 4 .
N O N I (| I |
N O N I (| I |
NN I |
NN N ||
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache

[[rexture | Jf || rexture] | Q] | [rexcure | | |} || rexture | || {{excure| | [§|| rexture| ||} || Texture | [§ | |rexture| |

|| ECE498AL, University of Illinois, Urbana-Champaign

Extended C

* Declspecs
. __device__ float filter[N];
— global, device, shared,
local, constant __global ___ void convolve (float *image) {

__shared _ float region[M];
o Keywords

— threadldx, blockldx region[threadldx] = image[i];
e Intrinsics __syncthreads()
— __syncthreads
image[j] = result;
* Runtime API }
— Memory, symbol, // Allocate GPU memory

i id *myi = cudaMal loc(byt
execution management ~ VO'd “myimage = cudaMalloc(bytes)

. // 100 blocks, 10 threads per block
Function launch convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 28
ECE 498AL, University of Illinois, Urbana-Champaign

Extended C

Integrated source
(foo.cu)

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly CPU Host Code

foo.s foo.cpp

OCG gcc / cl

G80 SASS Mark Murphy, *

foo.sass 1
www.capsl.udel.edu/conferences/open64/2008

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 /Papers/101.doc 29
ECE 498AL, University of Illinois, Urbana-Champaign

http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadlD |ol|l1|2|3|4|5]|6|7

float x = input[threadlD];
float y = func(x);

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

30

Thread Blocks: Scalable Cooperation

* Divide monolithic thread array into multiple
blocks

— Threads within a block cooperate via shared
memory, atomic operations and barrier
synchronization

— Threadsdn differentsbdeeks cannot ceeperate.

threadlD
%Ioat X = %Ioat X = %Ioat X =
input[threadlD]; input[threadlD]; input[threadlD];
float y = func(X); float y = func(X); T float y = func(x);
output[threadlD] = y; output[threadID] = y; output[threadlD] = y;
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 31

ECE 498AL, University of Illinois, Urbana-Champaign

Block IDs and Thread IDs

 Each thread uses IDs to decide
what data to work on

— Block ID: 1D or 2D

— Thread ID: 1D, 2D, or 3D

o Simplifies memory
addressing when processing
multidimensional data

— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Host Device
Grid 1
Ketnel Block Block
- (0,0) (1,0
BIocI,</' Block |
91 || @Y p
4 LI
, 2 ' \
,%Grid2)/ Y
/ / :
4 / .
Kernel L) :
|
[}

/
/

/

Block (1, 1

Courtesy: NDVIA

CUDA Memory Model Overview

e Global memory

— Main means of colymunicating
R/W Data between st and
device

— Contents visible to all thigads
— Long latency access

« We will focus on global
memory for now

— Constant and texture memory
will come later

Grid

Block (0, 0)

e

Block (1, 0)

|

Thread (0, 0)

Host

Thread (, 0)

Thread (0, 0)

Thread (1, 0)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

33

CUDA API Highlights:
Easy and Lightweight

e The API Is an extension to the ANSI C

programming language
) -
Low learning curve

* The hardware Is designed to enable
lightweight runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

34

CUDA Device Memory Allocation

e cudaMalloc()

— Allocates object in the
device Global Memory

— Requires two parameters
o Address of a pointer to the

allocated object

 Size of of allocated object

Grid

e cudaFree()

Host <

— Frees object from device

Global Memory
» Pointer to freed ob;ect

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Block (0, 0)

e

Block (1, 0)

vy

Thread (0, 0)

Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

35

CUDA Device Memory Allocation (cont.)

e Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md

— “d” 1s often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 36
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer

e cudaMemcpy()
— memory data transfer

— Requires four parameters

 Pointer to destination
 Pointer to source

* Number of bytes copied
* Type of transfer

Grid

Block (0, 0)

e

Block (1, 0)

vy

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

— Host to Host

— Host to Device
— Device to Host
— Device to Device

oo ASRChronoustransfer

ECE 498AL,®University of Illinois, Urbana-Champaign

/ N\
{) e —

N/

37

CUDA Host-Device Data Transfer
(cont.)

e Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic
cudaMsnstay(sld, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 38
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

39

CUDA Function Declarations

Executed | Only callable
on the: from the:
__device float DeviceFunc() device device
__global _ void KernelFunc(Q) device host
__host float HostFunc() host host
e global defines a kernel function
— Must return void
e device and host can be used

together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

40

CUDA Function Declarations (cont.)

e device functions cannot have their
address taken

e For functions executed on the device:
— No recursion

— No static variable declarations inside the function
— No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 41
ECE 498AL, University of Illinois, Urbana-Champaign

Calling a Kernel Function — Thread Creation

e A kernel function must be called with an execution
configuration:

~_global voird KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(..0);
« Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 42
ECE 498AL, University of Illinois, Urbana-Champaign

A Simple Running Example
Matrix Multiplication

« A simple matrix multiplication example that
Illustrates the basic features of memory and
thread management in CUDA programs
— Leave shared memory usage until later
— Local, register usage
— Thread ID usage
— Memory data transfer APl between host and device
— Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 43
ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model:
Square Matrix Multiplication Example

e P=M * N of size WIDTH x WIDTH
« Without tiling:
— One calculates one element of P

— M and N are loaded wiDTH times from
global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2(«

ECE 498AL, University of Illinois, Urbana-Champaign

Memory Layout of a Matrix in C

MO,Z I\/Il,2 I\/|2,2 M3,2

MO,S Ml,3 M2,3 M3,3

I\/IO,l Ml,l I\/|2,1 I\/|3,1 MO,Z I\/Il,2 I\/|2,2 M3,2 MO,S M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 45
ECE 498AL, University of Illinois, Urbana-Champaign

Step 1. Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{ K
for (inti = 0; i < Width; ++i) '
for (int] = 0;) < Width; ++)) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + j]; v
sum +=a * b;
}
P[i * Width + j] = sum;
}
) v

K

o]
v

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-20 _
ECE 498AL, University of lllinois, Urbana-Champaign g v

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

Int size = Width * Width * sizeof(float);
float* Md, Nd, Pd:;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/I Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 47
ECE 498AL, University of Illinois, Urbana-Champaign

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. [/ Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

¥

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 48
ECE 498AL, University of Illinois, Urbana-Champaign

Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global __ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/[l Pvalue Is used to store the element of the matrix
// that iIs computed by the thread
float Pvalue = O;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 49
ECE 498AL, University of Illinois, Urbana-Champaign

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++Kk) {
float Melement = Md[threadldx.y*Width+Kk];
float Nelement = Nd[k*Width+threadldx.x]; K
Pvalue += Melement * Nelement;
] tX
Pd[threadldx.y*Width+threadldx.x] = Pvalue;
}
Ly ty
K tX

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 5

ECE 498AL, University of Illinois, Urbana-Champaign |~

Step 5: Kernel Invocation
(Host-side Code)

I/ Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 51
ECE 498AL, University of Illinois, Urbana-Champaign

Only One Thread Block Used

* One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd

 Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md and
Nd elements
— Compute to off-chip memory
access ratio close to 1:1 (not very
high)
o Size of matrix limited by the
number of threads allowed in a
thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Nd

A
v

WIDTH

Md Pd

52

Step 7: Handling Arbitrary Sized Square
Matrices (will cover later)

e Have each 2D thread block to
compute a (TILE_ WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE_WIDTH)? threads

e Generate a 2D Grid of

QWID H/TILE W

You Still need to put a loop — by
around the kernel call for cases TILE_WIDTH
where WIDTH/TILE_WIDTH ty

IS greater than max grid size
(64K)! bx |tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 5

ECE 498AL, University of Illinois, Urbana-Champaign |~

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

54

Compiling a CUDA Program

float4 me = gx[gtid];
me.x += me.y * me.z;

R

Virtual

Physic

Target code

Id.global.v4.f32 {$f
mad . 32 $f1

© David KirTkiNViDiA and Wen-mei W Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Thread
eXecution (PTX)

— Virtual Machine
and ISA

— Programming
model
— Execution

resources and
state

1,$F3,$F5,$F7}, [$ro+0];
, $f5, $F3, $f1;

55

Compilation

 Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool
— PTX
* Object code directly
 Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

56
ECE 498AL, University of Illinois, Urbana-Champaign

Linking

* Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 57
ECE 498AL, University of Illinois, Urbana-Champaign

Debugging Using the
Device Emulation Mode

* An executable compiled in device emulation
mode (nvcc -deviceemu) runs

completely on the host using the CUDA

runtime

— No need of any device and CUDA driver
— Each device thread i1s emulated with a host thread

* Running in device emulation mode, one can:

— Use host native debug support (breakpoints, inspection, etc.)
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and vice-
versa

o pavid rirkNABTEG deaddack.aitatiens caused by improper usage of 58
ECE 498AL, UﬂWﬁWh yriapa rgmpaign

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

« Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 59
ECE 498AL, University of Illinois, Urbana-Champaign

Floating Point

 Results of floating-point computations will
slightly differ because of:
— Different compiler outputs, Instruction sets

— Use of extended precision for intermediate results

» There are various options to force strict single precision
on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 60
ECE 498AL, University of Illinois, Urbana-Champaign

COMPUTATIONAL THINKING

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

61

Objective

e To provide you with a framework based on
the techniques and best practices used by
experienced parallel programmers for
— Thinking about the problem of parallel

programming
— Discussing your work with others

— Addressing performance and functionality issues
In your parallel program

— Using or building useful tools and environments
o owis i ADAGLSIANAING, £a5e studies and projects 2

ECE408, University of Illinois, Urbana-Champaign

Fundamentals of Parallel
Computing
 Parallel computing requires that

— The problem can be decomposed into sub-
problems that can be safely solved at the same
time

— The programmer structures the code and data to
solve these sub-problems concurrently

* The goals of parallel computing are

— To solve problems In less time, and/or
The problems must be large enough to justify parallel

computing and to exhibit exploitable concurrency.
© pavid kiranhith AEAHEMELREIHELSOTULIOTNS 63

ECE408, University of Illinois, Urbana-Champaign

A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley,
2005, ISBN 0-321-22811-1.

— We draw quite a bit from the book

— A good overview of challenges, best practices,
and common techniques in all aspects of parallel
programming

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 64
ECE408, University of Illinois, Urbana-Champaign

Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm so that
concurrency can be exploited

3) To implement the algorithm in a suitable
programming environment

4) To execute and tune the performance of the

code on a parallel svstem
Unfortunately, these have not been separated into levels of

abstractions that can be dealt with independently.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 65
ECE408, University of Illinois, Urbana-Champaign

Challenges of Parallel
Programming

 Finding and exploiting concurrency often requires looking
at the problem from a non-obvious angle
— Computational thinking (J. Wing)

« Dependences need to be identified and managed

— The order of task execution may change the answers
» Obvious: One step feeds result to the next steps

» Subtle: numeric accuracy may be affected by ordering steps that are
logically parallel with each other

« Performance can be drastically reduced by many factors
— Overhead of parallel processing
— Load imbalance among processor elements
— Inefficient data sharing patterns
— Saturation of critical resources such as memory bandwidth

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 66
ECE408, University of Illinois, Urbana-Champaign

Shared Memory vs. Message
Passing

« We will focus on shared memory parallel
programming
— This is what CUDA is based on

— Future massively parallel microprocessors are expected
to support shared memory at the chip level
e The programming considerations of message
passing model is quite different!

— Look at MPI (Message Passing Interface) and its
relatives such as Charm++

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 67
ECE408, University of Illinois, Urbana-Champaign

Finding Concurrency in Problems

 |dentify a decomposition of the problem into sub-
problems that can be solved simultaneously

— A task decomposition that identifies tasks for potential
concurrent execution

— A data decomposition that identifies data local to each task

— A way of grouping tasks and ordering the groups to satisfy
temporal constraints

— An analysis on the data sharing patterns among the
concurrent tasks

— A design evaluation that assesses of the quality the choices
made in all the steps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 68
ECE408, University of Illinois, Urbana-Champaign

Finding Concurrency — The

/ Decomposition \

Task Decomposition

Data Decomposition

=)

\ /

This Is typically a iterative process.

Process

&pendence Analysis\

Group Tasks

Order Tasks

Data Sharing

&

Design Evaluation

/

Opportunities exist for dependence analysis to play earlier

©
E(

role in decomposition.

Task Decomposition

 Many large problems can be naturally
decomposed into tasks — CUDA kernels are
largely tasks

— The number of tasks used should be adjustable to
the execution resources available.

— Each task must include sufficient work in order to
compensate for the overhead of managing their
parallel execution.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”
- Mattson, Sanders, Massingill

© Davia KITK/NVIDIA ana vven-mel vw. HwuU, ZUU/-2U1U /U
ECE408, University of Illinois, Urbana-Champaign

Task Decomposition Example -
Square Matrix Multiplication

e P=M*N of WIDTH ¢ WIDTH

— One natural (sub-
problem) produces one
element of P

— All tasks can e)yaotttatn
parallel in this

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

71

Task Decomposition Example —

Molecular Dynamics
« Simulation of motions of a large molecular system

e For each atom, there are natural tasks to calculate
— Vibrational forces
— Rotational forces
— Neighbors that must be considered in non-bonded forces
— Non-bonded forces
— Update position and velocity
— Misc physical properties based on motions

e Some of these can go in parallel for an atom

It Is common that there are multiple ways to decompose any
oD given problem.

ECE4U8, university ot 111Inols, Urbana-Champaign

NAMD

PatchList Data
Structure
k4 Force & Energy
SPEC_NAMD A A A Calculation
1 Inner Loops

/144 iterations ('per
patch) |

/
6 Different NAMD

Configurations

(all independent) Independent

lterations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 73
ECE408, University of Illinois, Urbana-Champaign

Data Decomposition

e The most compute intensive parts of many large
problem manipulate a large data structure

— Similar operations are being applied to different parts of
the data structure, in a mostly independent manner.

— This is what CUDA is optimized for.

» The data decomposition should lead to
— Efficient data usage by tasks within the partition

— Few dependencies across the tasks that work on different
partitions

— Adjustable partitions that can be varied according to the
hardware characteristics

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 74
ECE408, University of Illinois, Urbana-Champaign

Data Decomposition Example -
Square Matrix Multiplication

e Row blocks

— Computing each partition requires
access to entire N array

e Square sub-blocks
— Only bands of M and N are needed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

75

Tasks Grouping

e Sometimes natural tasks of a problem can be
grouped together to improve efficiency

— Reduced synchronization overhead — all tasks in the
group can use a barrier to wait for a common
dependence

— All tasks in the group efficiently share data loaded into a
common on-chip, shared storage (Shard Memaory)

— Grouping and merging dependent tasks into one task
reduces need for synchronization

— CUDA thread blocks are task grouping examples.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 76
ECE408, University of Illinois, Urbana-Champaign

Task Grouping Example -
Square Matrix Multiplication

o Tasks calculating a P sub-block

— Extensive input data sharing,
reduced memory bandwidth using
Shared Memory

— All synched in execution

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

77

Task Ordering

o |dentify the data and resource required by a
group of tasks before they can execute them

— Find the task group that creates it

— Determine a temporal order that satisfy all data
constraints

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 78
ECE408, University of Illinois, Urbana-Champaign

Task Ordering Example:
Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces

A 4

Non-bonded Force

A 4 A 4

Update atomic positions and velocities

A 4

Next Time Step

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 79
ECE408, University of Illinois, Urbana-Champaign

Data Sharing

« Data sharing can be a double-edged sword

— EXxcessive data sharing can drastically reduce advantage of parallel
execution

— Localized sharing can improve memory bandwidth efficiency
o Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
— Efficient use of on-chip, shared storage

» Read-only sharing can usually be done at much higher
efficiency than read-write sharing, which often requires
synchronization

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 80
ECE408, University of Illinois, Urbana-Champaign

Data Sharing Example —
Matrix Multiplication

« Each task group will finish usage of each sub-block
of N and M before moving on

— N and M sub-blocks loaded into Shared Memory for use
by all threads of a P sub-block

— Amount of on-chip Shared Memory strictly limits the
number of threads working on a P sub-block

» Read-only shared data can be more efficiently
accessed as Constant or Texture data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 81
ECE408, University of Illinois, Urbana-Champaign

Data Sharing Example —
Molecular Dynamics

e The atomic coordinates

— Read-only access by the neighbor list, bonded force, and non-
bonded force task groups

— Read-write access for the position update task group
e The force array

— Read-only access by position update group

— Accumulate access by bonded and non-bonded task groups
e The neighbor list

— Read-only access by non-bonded force task groups
— Generated by the neighbor list task group

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

82

Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm to translate
concurrency into performance

3) To implement the algorithm in a suitable
programming environment

4) To execute and tune the performance of the code
on a parallel system

Unfortunately, these have not been separated into levels of
abstractions that can be dealt with independently.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 83
ECE408, University of Illinois, Urbana-Champaign

Algorithm

« A step by step procedure that is guaranteed to terminate, such
that each step Is precisely stated and can be carried out by a
computer

— Definiteness — the notion that each step is precisely stated

— Effective computability — each step can be carried out by a computer
— Finiteness — the procedure terminates

« Multiple algorithms can be used to solve the same problem
— Some require fewer steps
— Some exhibit more parallelism
— Some have larger memory footprint than others

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 84
ECE408, University of Illinois, Urbana-Champaign

Choosing Algorithm Structure

[Start }
\

=

ECE408, University of Illinois, Urbana-Champaign

Organize Organize by Organize by }
by Task Data Data Flow

Linear Recursive Linear Recursive Regular Irregular
p \ 4 N - - -V N - \ 4 N - \ 4 : N \ 4 N - \ 4 ~

Task Divide and Geometric Recursive Pineline Event Driven

Parallelism Conquer Decomposition Data P

N\ J N\ J N\ J J N\ J
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 85

Mapping a Divide and Conquer Algorithm

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

_
anea
SR
IINES
. .

%
a

|-

itefatio

I

B

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 Array elements — 86—
ECE408, University of Illinois, Urbana-Champaign

I BN \V\-\IIIVII\I\JI/ 7 4 \lv\.ll &I 100 W WAL W

Important for Geometric
MNaramnogition

o A framework for memory
data sharing and reuse by
Increasing data access

locality.

— Tiled access patterns allow
small cache/scartchpad
memories to hold on to data
for re-use.

— For matrix multiplication, a
16X16 thread block perform
2*256 = 512 float loads from
device memory for 256 *

operations.

A convenient framework for , ,
organizing threads (tasks)

© David Kirk/NVIDIA and Wen-mei W. Hwu 2007-2010

(2*16) = 8,192 mul/add l

A
\ 4
A

v

ECEA408, University of Illinois, Urbana-Champaign

Increased Work per Thread for even more

locality

e Each thread computes two element of Pd,,

* Reduced loads from global memory (Md) to
shared memory

e Reduced instruction overhead
— More work done in each iteration

j--

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-201(_

TILE_WIDT

012 TILE_WIDTH-1

i

ECE408, University of Illinois, Urbana-Champaign

Double Buffering
- a frequently used algorithm pattern

e One could double buffer the computation, getting better
Instruction mix within each thread
— This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()
Compute current tile

syncthreads()
s

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Load next tile from global memory

Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory
Compute current tile

syncthreads()

} 89

Double Buffering

e Deposit blue tile from register into

shared memory I I|
e Syncthreads
» Load orange tile into register

e Compute Blue tile

* Deposit orange tile into shared
memory

— |

> >

© David Kirk/NVIDIA and Wen-mei \W. Hwu, 2007-201(_

ECEA408, University of Illinois, Urbana-Champaign

((a) Direct summation
A\t At each grid point, sum the
+ |4 . | electrostatic potential from
all charges

.:+ 1—«——. + | (b) Cutoff summation

. ,K, Electrostatic potential from
S O nearby charges summed,;
+ o+ o+ o+ spatially sort charges first
@ o
+ + +7 +

Q[b '|'@]| (c)Cutoff summation using
L A—ft—1g- direct summation kernel

. nle «|4 Q. .| Spatially sort charges into
‘o 791" |*_*| bins; adapt direct

@ Summation to process a bin
@ .|. .[® @. .| Figure10.2 Cutoff Summation algorithm

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

91

Cut-Off Summation Restores Data
Scalability

1000

CPU-SSE3 '
LargeBin -
w 100 SmallBin - - - :
= SmallBin-Overlap o " = |
§ 10 k DirectSum f_:.,__,-~ Aﬁ,ﬂ i
o A " s
E 1 AT X e
i) T oK e B
5 0.1 ¢ . o "‘..-.'.""i :
8 B Same scalability
i 001 L = _-* among all cutoff
R implementations
0.001 - J J . .
1000 8000 64000 1e+06 8e+06

Volume of potential map (Angstroma)

Scalability and Performance of different algorithms for calculating
electrostatic potential map.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 92
ECE408, University of Illinois, Urbana-Champaign

	�Programming Massively Parallel Processors���
	Why Massively Parallel Processor
	CPUs and GPUs have fundamentally different design philosophies
	Architecture of a CUDA-capable GPU
	GT200 Characteristics
	Future Apps Reflect a Concurrent World
	Stretching Traditional Architectures
	Samples of Previous Projects
	Speedup of Applications
	GPU History
	A Fixed Function GPU Pipeline
	Texture Mapping Example
	Anti-Aliasing Example
	Programmable Vertex and Pixel Processors
	Unified Graphics Pipeline
	Slide Number 16
	CUDA Programming Model
	What is (Historical) GPGPU ?
	Previous GPGPU Constraints
	CUDA
	An Example of Physical Reality Behind CUDA
	Parallel Computing on a GPU
	Overview
	CUDA – C with no shader limitations!
	CUDA Devices and Threads
	G80 – Graphics Mode
	G80 CUDA mode – A Device Example
	Extended C
	Extended C
	Slide Number 30
	Thread Blocks: Scalable Cooperation
	Block IDs and Thread IDs
	CUDA Memory Model Overview
	CUDA API Highlights:�Easy and Lightweight
	CUDA Device Memory Allocation
	CUDA Device Memory Allocation (cont.)‏
	CUDA Host-Device Data Transfer
	CUDA Host-Device Data Transfer�(cont.)
	CUDA Keywords
	CUDA Function Declarations
	CUDA Function Declarations (cont.)‏
	Calling a Kernel Function – Thread Creation
	A Simple Running Example�Matrix Multiplication
	Programming Model:�Square Matrix Multiplication Example
	Memory Layout of a Matrix in C
	Step 1: Matrix Multiplication�A Simple Host Version in C
	Step 2: Input Matrix Data Transfer�(Host-side Code)‏
	Step 3: Output Matrix Data Transfer�(Host-side Code)‏
	Step 4: Kernel Function
	Step 4: Kernel Function (cont.)‏
	Step 5: Kernel Invocation�(Host-side Code)
	Only One Thread Block Used
	Step 7: Handling Arbitrary Sized Square Matrices (will cover later)
	Some Useful Information on Tools
	Slide Number 55
	Slide Number 56
	Linking
	Debugging Using the�Device Emulation Mode
	Device Emulation Mode Pitfalls
	Floating Point
	Computational Thinking
	Objective
	Fundamentals of Parallel Computing
	A Recommended Reading
	Key Parallel Programming Steps
	Challenges of Parallel Programming
	Shared Memory vs. Message Passing
	Finding Concurrency in Problems
	Finding Concurrency – The Process
	Task Decomposition
	Task Decomposition Example - Square Matrix Multiplication
	Task Decomposition Example –�Molecular Dynamics
	NAMD
	Data Decomposition
	Data Decomposition Example - Square Matrix Multiplication
	Tasks Grouping
	Task Grouping Example - �Square Matrix Multiplication
	Task Ordering
	Task Ordering Example:�Molecular Dynamics
	Data Sharing
	Data Sharing Example – �Matrix Multiplication
	Data Sharing Example – �Molecular Dynamics
	Key Parallel Programming Steps
	Algorithm
	Choosing Algorithm Structure
	Mapping a Divide and Conquer Algorithm
	Tiled (Stenciled) Algorithms are Important for Geometric Decomposition
	 Increased Work per Thread for even more locality
	Double Buffering �- a frequently used algorithm pattern
	Double Buffering
	Slide Number 91
	Cut-Off Summation Restores Data Scalability

