
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

1

Programming Massively Parallel
Processors

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

2

Why Massively Parallel Processor
• A quiet revolution and potential build-up

– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until last year, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential
impact

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

3

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have fundamentally
different design philosophies

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

4

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Architecture of a CUDA-capable GPU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

5

GT200 Characteristics
• 1 TFLOPS peak performance (25-50 times of current high-

end microprocessors)
• 265 GFLOPS sustained for apps such as VMD
• Massively parallel, 128 cores, 90W
• Massively threaded, sustains 1000s of threads per app
• 30-100 times speedup over high-end microprocessors on

scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so I have to be careful what I say
publically until I triple check those numbers.”

-John Stone, VMD group, Physics UIUC

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

6

Future Apps Reflect a Concurrent
World

• Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and

manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

– These “Super-apps” represent and model physical,
concurrent world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

7

Stretching Traditional Architectures
• Traditional parallel architectures cover some

super-applications
– DSP, GPU, network apps, Scientific

• The game is to grow mainstream architectures
“out” or domain-specific architectures “in”
– CUDA is latter

Traditional applications

Current architecture
coverage

New applications

Domain-specific
architecture coverage

Obstacles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

8

Samples of Previous Projects
Application Description Source Kernel % time
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision
and print fewer reports 1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D
graded materials 1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion 1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine 952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%
FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation 1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s
configuration in MRI reconstruction 490 33 >99%

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

9

Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248
• 10× speedup in a kernel is typical, as long as the kernel can occupy

enough parallel threads
• 25× to 400× speedup if the function’s data requirements and control flow

suit the GPU and the application is optimized

0
10
20
30
40
50
60

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-
FHD

Kernel
Application

210 457
431

316
263

G
PU

 S
pe

ed
up

R
el

at
iv

e
to

 C
PU

79

GPU HISTORY

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

11

Host

Vertex Control
Vertex
Cache

VS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

CPU

GPUHost Interface

A Fixed Function
GPU Pipeline

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

12

Texture mapping example: painting a world map
texture image onto a globe object.

Texture Mapping Example

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

13

Triangle Geometry Aliased Anti-AliasedTriangle Geometry Aliased Anti-Aliased

Anti-Aliasing Example

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

14

3D Application
or Game

3D API:
OpenGL or
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization &
Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU
Command &

Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments
Transformed
Fragments

Raster
Operation

s

Framebuffer

Pixel
UpdatesGPU

Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

CPU

GPU

An example of separate vertex processor and fragment processor in
a programmable graphics pipeline

Programmable Vertex and Pixel
Processors

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

15

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Data Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Unified Graphics Pipeline

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

16

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB Memory

The restricted input and output capabilities of a shader programming model.

CUDA PROGRAMMING
MODEL

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

18

What is (Historical) GPGPU ?
• General Purpose computation using GPU and graphics API

in applications other than 3D graphics
– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput
– Fine-grain SIMD parallelism
– Low-latency floating point (FP) computation

• Applications – see //GPGPU.org
– Game effects (FX) physics, image processing
– Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

19

Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the
graphics API

• Addressing modes
– Limited texture size/dimension

• Shader capabilities
– Limited outputs

• Instruction sets
– Lack of Integer & bit ops

• Communication limited
– Between pixels
– Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

20

CUDA
• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

• Targeted software stack
– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU
– Standalone Driver - Optimized for computation
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/
http://www.opengl.org/

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

21

An Example of Physical Reality
Behind CUDA CPU

(host)
GPU w/

local DRAM
(device)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

22

Parallel Computing on a GPU

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses application

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

23

Overview

• CUDA programming model – basic
concepts and data types

• CUDA application programming interface -
basic

• Simple examples to illustrate basic concepts
and functionalities

• Performance features will be covered later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

24

CUDA – C with no shader
limitations!

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

25

CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel
– Is typically a GPU but can also be another type of parallel processing

device

• Data-parallel portions of an application are expressed as device
kernels which run on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

26

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

• The future of GPUs is programmable processing
• So – build the architecture around the processor

G80 – Graphics Mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

27

G80 CUDA mode – A Device Example
• Processors execute computing threads
• New operating mode/HW interface for

computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

28

Extended C
• Declspecs

– global, device, shared,
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

29

gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “NVIDIA’s Experience with
Open64,”
www.capsl.udel.edu/conferences/open64/2008
/Papers/101.doc

http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

30

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)
– Each thread has an ID that it uses to compute

memory addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

31

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation
• Divide monolithic thread array into multiple

blocks
– Threads within a block cooperate via shared

memory, atomic operations and barrier
synchronization

– Threads in different blocks cannot cooperate
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

32

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to decide
what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

33

CUDA Memory Model Overview
• Global memory

– Main means of communicating
R/W Data between host and
device

– Contents visible to all threads
– Long latency access

• We will focus on global
memory for now
– Constant and texture memory

will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

34

CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C
programming language

Low learning curve

• The hardware is designed to enable
lightweight runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

35

CUDA Device Memory Allocation
• cudaMalloc()

– Allocates object in the
device Global Memory

– Requires two parameters
• Address of a pointer to the

allocated object
• Size of of allocated object

• cudaFree()
– Frees object from device

Global Memory
• Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

36

CUDA Device Memory Allocation (cont.)

• Code example:
– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

37

CUDA Host-Device Data Transfer
• cudaMemcpy()

– memory data transfer
– Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

38

CUDA Host-Device Data Transfer
(cont.)

• Code example:
– Transfer a 64 * 64 single precision float array
– M is in host memory and Md is in device memory
– cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic
constantscudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

39

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

40

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used
together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

41

CUDA Function Declarations (cont.)

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

42

Calling a Kernel Function – Thread Creation
• A kernel function must be called with an execution

configuration:
__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

43

A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device
– Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

44

Programming Model:
Square Matrix Multiplication Example
• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one element of P
– M and N are loaded WIDTH times from

global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

45

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

46

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
}

i

k

k

j

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

47

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{

int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;
…

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

48

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later
…

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

49

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

50

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

51

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

52

Only One Thread Block Used
• One Block of threads compute

matrix Pd
– Each thread computes one

element of Pd
• Each thread

– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and

addition for each pair of Md and
Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

53

Step 7: Handling Arbitrary Sized Square
Matrices (will cover later)

• Have each 2D thread block to
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix
– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/TILE_WIDTH)2 blocksMd

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop
around the kernel call for cases
where WIDTH/TILE_WIDTH
is greater than max grid size
(64K)!

TILE_WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

54

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

55

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread
eXecution (PTX)
– Virtual Machine

and ISA
– Programming

model
– Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

56

Compilation
• Any source file containing CUDA language

extensions must be compiled with NVCC
• NVCC is a compiler driver

– Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

• NVCC outputs:
– C code (host CPU Code)

• Must then be compiled with the rest of the application using another tool

– PTX
• Object code directly
• Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

57

Linking

• Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

58

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs
completely on the host using the CUDA
runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-

versa
– Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

59

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially,

so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

• Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

60

Floating Point

• Results of floating-point computations will
slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision
on the host

COMPUTATIONAL THINKING

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

61

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

62

Objective

• To provide you with a framework based on
the techniques and best practices used by
experienced parallel programmers for
– Thinking about the problem of parallel

programming
– Discussing your work with others
– Addressing performance and functionality issues

in your parallel program
– Using or building useful tools and environments
– understanding case studies and projects

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

63

Fundamentals of Parallel
Computing

• Parallel computing requires that
– The problem can be decomposed into sub-

problems that can be safely solved at the same
time

– The programmer structures the code and data to
solve these sub-problems concurrently

• The goals of parallel computing are
– To solve problems in less time, and/or
– To solve bigger problems, and/or
– To achieve better solutions

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

64

A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley,
2005, ISBN 0-321-22811-1.

– We draw quite a bit from the book
– A good overview of challenges, best practices,

and common techniques in all aspects of parallel
programming

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

65

Key Parallel Programming Steps

1) To find the concurrency in the problem
2) To structure the algorithm so that

concurrency can be exploited
3) To implement the algorithm in a suitable

programming environment
4) To execute and tune the performance of the

code on a parallel system
Unfortunately, these have not been separated into levels of

abstractions that can be dealt with independently.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

66

Challenges of Parallel
Programming

• Finding and exploiting concurrency often requires looking
at the problem from a non-obvious angle
– Computational thinking (J. Wing)

• Dependences need to be identified and managed
– The order of task execution may change the answers

• Obvious: One step feeds result to the next steps
• Subtle: numeric accuracy may be affected by ordering steps that are

logically parallel with each other

• Performance can be drastically reduced by many factors
– Overhead of parallel processing
– Load imbalance among processor elements
– Inefficient data sharing patterns
– Saturation of critical resources such as memory bandwidth

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

67

Shared Memory vs. Message
Passing

• We will focus on shared memory parallel
programming
– This is what CUDA is based on
– Future massively parallel microprocessors are expected

to support shared memory at the chip level
• The programming considerations of message

passing model is quite different!
– Look at MPI (Message Passing Interface) and its

relatives such as Charm++

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

68

Finding Concurrency in Problems
• Identify a decomposition of the problem into sub-

problems that can be solved simultaneously
– A task decomposition that identifies tasks for potential

concurrent execution
– A data decomposition that identifies data local to each task
– A way of grouping tasks and ordering the groups to satisfy

temporal constraints
– An analysis on the data sharing patterns among the

concurrent tasks
– A design evaluation that assesses of the quality the choices

made in all the steps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

69

Finding Concurrency – The
Process

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

This is typically a iterative process.
Opportunities exist for dependence analysis to play earlier

role in decomposition.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

70

Task Decomposition
• Many large problems can be naturally

decomposed into tasks – CUDA kernels are
largely tasks
– The number of tasks used should be adjustable to

the execution resources available.
– Each task must include sufficient work in order to

compensate for the overhead of managing their
parallel execution.

– Tasks should maximize reuse of sequential
program code to minimize effort.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”

- Mattson, Sanders, Massingill

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

71

Task Decomposition Example -
Square Matrix Multiplication

• P = M * N of WIDTH ● WIDTH
– One natural task (sub-

problem) produces one
element of P

– All tasks can execute in
parallel in this example.

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

72

Task Decomposition Example –
Molecular Dynamics

• Simulation of motions of a large molecular system
• For each atom, there are natural tasks to calculate

– Vibrational forces
– Rotational forces
– Neighbors that must be considered in non-bonded forces
– Non-bonded forces
– Update position and velocity
– Misc physical properties based on motions

• Some of these can go in parallel for an atom

It is common that there are multiple ways to decompose any
given problem.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

73

NAMD

SPEC_NAMD

6 Different NAMD
Configurations

(all independent)

SelfComputes Objects

PairComputes Objects

….... 144 iterations (per
patch)

Independent
Iterations

…
.

Force & Energy
Calculation
Inner Loops

1872 iterations
(per patch pair)

…..

PatchList Data
Structure

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

74

Data Decomposition
• The most compute intensive parts of many large

problem manipulate a large data structure
– Similar operations are being applied to different parts of

the data structure, in a mostly independent manner.
– This is what CUDA is optimized for.

• The data decomposition should lead to
– Efficient data usage by tasks within the partition
– Few dependencies across the tasks that work on different

partitions
– Adjustable partitions that can be varied according to the

hardware characteristics

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

75

Data Decomposition Example -
Square Matrix Multiplication

• Row blocks
– Computing each partition requires

access to entire N array
• Square sub-blocks

– Only bands of M and N are needed
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

76

Tasks Grouping
• Sometimes natural tasks of a problem can be

grouped together to improve efficiency
– Reduced synchronization overhead – all tasks in the

group can use a barrier to wait for a common
dependence

– All tasks in the group efficiently share data loaded into a
common on-chip, shared storage (Shard Memory)

– Grouping and merging dependent tasks into one task
reduces need for synchronization

– CUDA thread blocks are task grouping examples.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

77

P

Task Grouping Example -
Square Matrix Multiplication

• Tasks calculating a P sub-block
– Extensive input data sharing,

reduced memory bandwidth using
Shared Memory

– All synched in execution

M

N

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

78

Task Ordering

• Identify the data and resource required by a
group of tasks before they can execute them
– Find the task group that creates it
– Determine a temporal order that satisfy all data

constraints

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

79

Task Ordering Example:
Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces

Non-bonded Force

Next Time Step

Update atomic positions and velocities

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

80

Data Sharing
• Data sharing can be a double-edged sword

– Excessive data sharing can drastically reduce advantage of parallel
execution

– Localized sharing can improve memory bandwidth efficiency

• Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
– Efficient use of on-chip, shared storage

• Read-only sharing can usually be done at much higher
efficiency than read-write sharing, which often requires
synchronization

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

81

Data Sharing Example –
Matrix Multiplication

• Each task group will finish usage of each sub-block
of N and M before moving on
– N and M sub-blocks loaded into Shared Memory for use

by all threads of a P sub-block
– Amount of on-chip Shared Memory strictly limits the

number of threads working on a P sub-block
• Read-only shared data can be more efficiently

accessed as Constant or Texture data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

82

Data Sharing Example –
Molecular Dynamics

• The atomic coordinates
– Read-only access by the neighbor list, bonded force, and non-

bonded force task groups
– Read-write access for the position update task group

• The force array
– Read-only access by position update group
– Accumulate access by bonded and non-bonded task groups

• The neighbor list
– Read-only access by non-bonded force task groups
– Generated by the neighbor list task group

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

83

Key Parallel Programming Steps
1) To find the concurrency in the problem
2) To structure the algorithm to translate

concurrency into performance
3) To implement the algorithm in a suitable

programming environment
4) To execute and tune the performance of the code

on a parallel system

Unfortunately, these have not been separated into levels of
abstractions that can be dealt with independently.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

84

Algorithm
• A step by step procedure that is guaranteed to terminate, such

that each step is precisely stated and can be carried out by a
computer
– Definiteness – the notion that each step is precisely stated
– Effective computability – each step can be carried out by a computer
– Finiteness – the procedure terminates

• Multiple algorithms can be used to solve the same problem
– Some require fewer steps
– Some exhibit more parallelism
– Some have larger memory footprint than others

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

85

Choosing Algorithm Structure

Start

Organize
by Task

Organize by
Data

Organize by
Data Flow

Linear Recursive Linear Recursive

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Regular Irregular

Pipeline Event Driven

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

86

Mapping a Divide and Conquer Algorithm

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

87

M

N

P

Psub

BLOCK_WIDTH

WIDTHWIDTH

BLOCK_WIDTHBLOCK_WIDTH

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_W

ID
T

H
B

L
O

C
K

_W
ID

T
H

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W
ID

T
H

Tiled (Stenciled) Algorithms are
Important for Geometric

Decomposition • A framework for memory
data sharing and reuse by
increasing data access
locality.
– Tiled access patterns allow

small cache/scartchpad
memories to hold on to data
for re-use.

– For matrix multiplication, a
16X16 thread block perform
2*256 = 512 float loads from
device memory for 256 *
(2*16) = 8,192 mul/add
operations.

• A convenient framework for
organizing threads (tasks)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

88

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Increased Work per Thread for even more
locality

• Each thread computes two element of Pdsub

• Reduced loads from global memory (Md) to
shared memory

• Reduced instruction overhead
– More work done in each iteration

Pdsub

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

89

Double Buffering
- a frequently used algorithm pattern

• One could double buffer the computation, getting better
instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

90

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Double Buffering
• Deposit blue tile from register into

shared memory
• Syncthreads
• Load orange tile into register
• Compute Blue tile
• Deposit orange tile into shared

memory
• ….

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

91

(a) Direct summation
At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin
Figure 10.2 Cutoff Summation algorithm

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

92

Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for calculating
electrostatic potential map.

Cut-Off Summation Restores Data
Scalability

	�Programming Massively Parallel Processors���
	Why Massively Parallel Processor
	CPUs and GPUs have fundamentally different design philosophies
	Architecture of a CUDA-capable GPU
	GT200 Characteristics
	Future Apps Reflect a Concurrent World
	Stretching Traditional Architectures
	Samples of Previous Projects
	Speedup of Applications
	GPU History
	A Fixed Function GPU Pipeline
	Texture Mapping Example
	Anti-Aliasing Example
	Programmable Vertex and Pixel Processors
	Unified Graphics Pipeline
	Slide Number 16
	CUDA Programming Model
	What is (Historical) GPGPU ?
	Previous GPGPU Constraints
	CUDA
	An Example of Physical Reality Behind CUDA
	Parallel Computing on a GPU
	Overview
	CUDA – C with no shader limitations!
	CUDA Devices and Threads
	G80 – Graphics Mode
	G80 CUDA mode – A Device Example
	Extended C
	Extended C
	Slide Number 30
	Thread Blocks: Scalable Cooperation
	Block IDs and Thread IDs
	CUDA Memory Model Overview
	CUDA API Highlights:�Easy and Lightweight
	CUDA Device Memory Allocation
	CUDA Device Memory Allocation (cont.)‏
	CUDA Host-Device Data Transfer
	CUDA Host-Device Data Transfer�(cont.)
	CUDA Keywords
	CUDA Function Declarations
	CUDA Function Declarations (cont.)‏
	Calling a Kernel Function – Thread Creation
	A Simple Running Example�Matrix Multiplication
	Programming Model:�Square Matrix Multiplication Example
	Memory Layout of a Matrix in C
	Step 1: Matrix Multiplication�A Simple Host Version in C
	Step 2: Input Matrix Data Transfer�(Host-side Code)‏
	Step 3: Output Matrix Data Transfer�(Host-side Code)‏
	Step 4: Kernel Function
	Step 4: Kernel Function (cont.)‏
	Step 5: Kernel Invocation�(Host-side Code)
	Only One Thread Block Used
	Step 7: Handling Arbitrary Sized Square Matrices (will cover later)
	Some Useful Information on Tools
	Slide Number 55
	Slide Number 56
	Linking
	Debugging Using the�Device Emulation Mode
	Device Emulation Mode Pitfalls
	Floating Point
	Computational Thinking
	Objective
	Fundamentals of Parallel Computing
	A Recommended Reading
	Key Parallel Programming Steps
	Challenges of Parallel Programming
	Shared Memory vs. Message Passing
	Finding Concurrency in Problems
	Finding Concurrency – The Process
	Task Decomposition
	Task Decomposition Example - Square Matrix Multiplication
	Task Decomposition Example –�Molecular Dynamics
	NAMD
	Data Decomposition
	Data Decomposition Example - Square Matrix Multiplication
	Tasks Grouping
	Task Grouping Example - �Square Matrix Multiplication
	Task Ordering
	Task Ordering Example:�Molecular Dynamics
	Data Sharing
	Data Sharing Example – �Matrix Multiplication
	Data Sharing Example – �Molecular Dynamics
	Key Parallel Programming Steps
	Algorithm
	Choosing Algorithm Structure
	Mapping a Divide and Conquer Algorithm
	Tiled (Stenciled) Algorithms are Important for Geometric Decomposition
	 Increased Work per Thread for even more locality
	Double Buffering �- a frequently used algorithm pattern
	Double Buffering
	Slide Number 91
	Cut-Off Summation Restores Data Scalability

