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Why Massively Parallel Processor

e A quiet revolution and potential build-up
— Calculation: 367 GFLOPS vs. 32 GFLOPS
— Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
— Until last year, programmed through graphics API
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CPUs and GPUs have fundamentally
different design philosophies
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Architecture of a CUDA-capable GPU
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GT200 Characteristics

« 1 TFLOPS peak performance (25-50 times of current high-
end microprocessors)

o 265 GFLOPS sustained for apps such as VMD
o Massively parallel, 128 cores, 90W
o Massively threaded, sustains 1000s of threads per app

* 30-100 times speedup over high-end microprocessors on
scientific and media applications: medical imaging,
molecular dynamics

“I think they're right on the money, but the huge performance
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)
will invite close scrutiny so | have to be careful what | say
publically until I triple check those numbers.”

-John Stone, VMD group, Physics UIUC
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Future Apps Reflect a Concurrent
World

 Exciting applications in future mass computing
market have been traditionally considered
“supercomputing applications”

— Molecular dynamics simulation, Video and audio coding and
manipulation, 3D imaging and visualization, Consumer game
physics, and virtual reality products

—These “Super-apps” represent and model physical,
concurrent world

 Various granularities of parallelism exist, but...

— programming model must not hinder parallel implementation
— data delivery needs careful management
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Stretching Traditional Architectures

 Traditional parallel architectures cover some
super-applications
— DSP, GPU, network apps, Scientific

* The game Is to grow mainstream architectures
“‘out” or domain-specific architectures “in”

— CUDA 1s latter

[ Traditional applications

D Current architecture
coverage

|| New applications
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Samples of Previous Projects

Application | Description Source | Kernel | % time
H 264 SPEC “06 version, change in guess vector 34,811 194 35%
SPEC “06 version, change to single precision 0
LB M and print fewer reports 1’481 285 >99 /0
RC5-72 Distributed.net RC5-72 challenge client code 1 ’ 979 218 >0904
Finite element modeling, simulation of 3D 0
FEM graded materials 1’874 146 99 /0
Rye Polynomial Equation Solver, quantum 0
RPES chem, 2-electron repulsion 1’104 281 99 /0
P NS Petri Net simulation of a distributed system 322 160 >99%
Single-precision implementation of saxpy, 0
SAXPY used in Linpack’s Gaussian elim. routine 952 31 >99 /0
TRACF Two Point Angular Correlation Function 536 98 96%
Finite-Difference Time Domain analysis of 0
FDTD 2D electromagnetic wave propagation 1’365 93 16 /0
Computing a matrix Q, a scanner’s 0
MR 7 nonvio1h eptisoramomsirmrriaesieuction 490 33| >99%

—or—
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Speedup of Applications
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H264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-

e GeForce 8800 GTX vs. 2.2GHz Opteron 248 i

» 10x speedup in a kernel is typical, as long as the kernel can occupy
enough parallel threads

o 25x to 400x speedup if the function’s data requirements and control flow
suit the GPU and the application is optimized
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GPU HISTORY
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CPU

GPU

A Fixed Function
GPU Pipeline
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Texture mapping example: painting a world map
texture image onto a globe object.

sphere with texture
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Anti-Aliasing Example
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Programmable Vertex and Pixel
Processors

3D Application

or Game
3D API
Commands
\ 4
3D API: C P U
OpenGL or
Direct3D
CPU — GPU Boundary
GSU Assembled G P U
Command & Polygons, Pixel
Data Stream v Vertex Index Lines, and Location Pixel
GPU Stream Points Stream Updates
Primitive Rasterization & Raster =
Front > > X —> X » Framebuffer
End Assembly Interpolation Operation
A S
Pre-transformed A
Vertices ‘ q Rasterized ‘ q
Traqs ormed pra_transformed Transforme
Vertices Fragments Fragments
Prog\;ar?mable Programmable
ertex Fragment

Processor Processor

An example of separate vertex processor and fragment processor in

rogrammable graphi ipelin
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Unified Graphics Pipeline
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O

Input Registers

l

Fragment Program

l

per thread
per Shader

Constants

Temp Registers

Output Registers

The restricted input and output capabilities of a shader programming model.
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CUDA PROGRAMMING
MODEL
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What i1s (Historical) GPGPU ?

* General Purpose computation using GPU and graphics API
In applications other than 3D graphics

— GPU accelerates critical path of application

« Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism EEG P U
— Low-latency floating point (FP) computation

* Applications — see //GPGPU.org

— Game effects (FX) physics, image processing

— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 18
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Previous GPGPU Constraints

« Dealing with graphics API
— Working with the corner cases of the
graphics API

o Addressing modes
— Limited texture size/dimension

o Shader capabilities
— Limited outputs

 Instruction sets
— Lack of Integer & bit ops

e Communication limited
— Between pixels
— Scatter afi]=p

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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CUDA

« “Compute Unified Device Architecture”

o General purpose programming model
— User kicks off batches of threads on the GPU
— GPU = dedicated super-threaded, massively data parallel co-
processor
o Targeted software stack
— Compute oriented drivers, language, and tools

 Driver for loading computation programs into GPU
— Standalone Driver - Optimized for computation
— Interface designed for compute — graphics-free API
— Data sharing with OpenGL buffer objects
— Guaranteed maximum download & readback speeds
© bavid kirNZS G e R mesy2enanagement
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http://www.opengl.org/
http://www.opengl.org/

An Example of Physical Reality

) Intel* Pentium® 4 (hOSt)
GPU w/ Extronme Edfion
local DRAM [oacen
. (device) i

Intel® High
Definition Audio

4 PCI
Express® x1

8 Hi-Speed

USB 2.0 Ports
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Parallel Computing on a GP

o 8-series GPUs deliver 25 to 200+ GFLOP SN
on compiled parallel C applications
— Available in laptops, desktops, and clusters

o GPU parallelism is doubling every year

* Programming model scales transparently
Tesla D870

 Programmable in C with CUDA tools

o Multithreaded SPMD model uses application
data parallelism and thread parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 TeslaS870
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Overview

 CUDA programming model — basic
concepts and data types

 CUDA application programming interface -
basic

« Simple examples to illustrate basic concepts
and functionalities

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 23
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CUDA — C with no shader

limitations!
* Integrated host+device app C program

— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
Parallel Kernel (device) > §:> 3 | | SR> §}> x>
KernelA<<< nBlk, nTid >>>(args); ‘ S 5
Serial Code (host) g
Parallel Kernel (device) S || D | | SRS SR
KernelB<<< nBIlk, nTid >>>(args); > |
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CUDA Devices and Threads

e A compute device
— Isa coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Istypically a GPU but can also be another type of parallel processing
device
« Data-parallel portions of an application are expressed as device
kernels which run on many threads

e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
» Very little creation overhead

— GPU needs 1000s of threads for full efficiency
» Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 25
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G80 — Graphics Mode

e The future of GPUs is programmable processing
e So - build the architecture around the processor
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G80 CUDA mode — A Device Example

* Processors execute computing threads
* New operating mode/HW interface for

Host

compuring

Input Assembler

'
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Extended C

* Declspecs
. __device__ float filter[N];
— global, device, shared,
local, constant __global ___ void convolve (float *image) {

__shared _ float region[M];
o Keywords

— threadldx, blockldx region[threadldx] = image[i];
e Intrinsics __syncthreads()
— __syncthreads
image[j] = result;
* Runtime API }
— Memory, symbol, // Allocate GPU memory

i id *myi = cudaMal loc(byt
execution management ~ VO'd “myimage = cudaMalloc(bytes)

. // 100 blocks, 10 threads per block
Function launch convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 28
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Extended C

Integrated source
(foo.cu)

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly CPU Host Code

foo.s foo.cpp

OCG gcc / cl

G80 SASS Mark Murphy, *

foo.sass 1
www.capsl.udel.edu/conferences/open64/2008

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 /Papers/101.doc 29
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Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadlD |ol|l1|2|3|4|5]|6|7

float x = input[threadlD];
float y = func(x);

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Thread Blocks: Scalable Cooperation

* Divide monolithic thread array into multiple
blocks

— Threads within a block cooperate via shared
memory, atomic operations and barrier
synchronization

— Threadsdn differentsbdeeks cannot ceeperate.

threadlD
%Ioat X = %Ioat X = %Ioat X =
input[threadlD]; input[threadlD]; input[threadlD];
float y = func(X); float y = func(X); T float y = func(x);
output[threadlD] = y; output[threadID] = y; output[threadlD] = y;
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 31
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Block IDs and Thread IDs

 Each thread uses IDs to decide
what data to work on

— Block ID: 1D or 2D

— Thread ID: 1D, 2D, or 3D

o Simplifies memory
addressing when processing
multidimensional data

— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Host Device
Grid 1
Ketnel Block Block
- (0,0) (1,0
BIocI,</' Block |
91 || @Y p
4 LI
, 2 ' \
,%Grid2 )/ Y
/ / :
4 / .
Kernel L) :
|
[}

/
/

/

Block (1, 1

Courtesy: NDVIA



CUDA Memory Model Overview

e Global memory

— Main means of colymunicating
R/W Data between st and
device

— Contents visible to all thigads
— Long latency access

« We will focus on global
memory for now

— Constant and texture memory
will come later

Grid

Block (0, 0)

e

Block (1, 0)

|

Thread (0, 0)

Host

Thread (, 0)

Thread (0, 0)

Thread (1, 0)
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CUDA API Highlights:
Easy and Lightweight

e The API Is an extension to the ANSI C

programming language
) -
Low learning curve

* The hardware Is designed to enable
lightweight runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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CUDA Device Memory Allocation

e cudaMalloc()

— Allocates object in the
device Global Memory

— Requires two parameters
o Address of a pointer to the

allocated object

 Size of of allocated object

Grid

e cudaFree()

Host <

— Frees object from device

Global Memory
» Pointer to freed ob;ect

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Block (1, 0)
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Thread (0, 0)

Thread (1, 0)

Thread (0, 0) | Thread (1, 0)
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CUDA Device Memory Allocation (cont.)

e Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md

— “d” 1s often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 36
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CUDA Host-Device Data Transfer

e cudaMemcpy()
— memory data transfer

— Requires four parameters

 Pointer to destination
 Pointer to source

* Number of bytes copied
* Type of transfer

Grid

Block (0, 0)

e

Block (1, 0)

vy

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

— Host to Host

— Host to Device
— Device to Host
— Device to Device

oo ASRChronoustransfer

ECE 498AL,®University of Illinois, Urbana-Champaign
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CUDA Host-Device Data Transfer
(cont.)

e Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic
cudaMsnstay(sld, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 38
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CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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CUDA Function Declarations

Executed | Only callable
on the: from the:
__device  float DeviceFunc() device device
__global _ void KernelFunc(Q) device host
__host  float HostFunc() host host
e  global  defines a kernel function
— Must return void
e device and host can be used

together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign
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CUDA Function Declarations (cont.)

e device functions cannot have their
address taken

e For functions executed on the device:
— No recursion

— No static variable declarations inside the function
— No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 41
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Calling a Kernel Function — Thread Creation

e A kernel function must be called with an execution
configuration:

~_global  voird KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(..0);
« Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 42
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A Simple Running Example
Matrix Multiplication

« A simple matrix multiplication example that
Illustrates the basic features of memory and
thread management in CUDA programs
— Leave shared memory usage until later
— Local, register usage
— Thread ID usage
— Memory data transfer APl between host and device
— Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 43
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Programming Model:
Square Matrix Multiplication Example

e P=M * N of size WIDTH x WIDTH
« Without tiling:
— One calculates one element of P

— M and N are loaded wiDTH times from
global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2(«
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Memory Layout of a Matrix in C

MO,Z I\/Il,2 I\/|2,2 M3,2

MO,S Ml,3 M2,3 M3,3

I\/IO,l Ml,l I\/|2,1 I\/|3,1 MO,Z I\/Il,2 I\/|2,2 M3,2 MO,S M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 45
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Step 1. Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{ K
for (inti = 0; i < Width; ++i) '
for (int] = 0; ) < Width; ++)) {
double sum = 0;
for (int k = 0; k < Width; ++k) {
double a = M[i * width + k];
double b = N[k * width + j]; v
sum +=a * b;
}
P[i * Width + j] = sum;
}
) v

K

o]
v

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-20 _
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Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

Int size = Width * Width * sizeof(float);
float* Md, Nd, Pd:;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/I Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 47
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Step 3: Output Matrix Data Transfer
(Host-side Code)

2. [/ Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

¥

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 48
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Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global __ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/[l Pvalue Is used to store the element of the matrix
// that iIs computed by the thread
float Pvalue = O;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 49
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Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++Kk) {
float Melement = Md[threadldx.y*Width+Kk];
float Nelement = Nd[k*Width+threadldx.x]; K
Pvalue += Melement * Nelement;
] tX
Pd[threadldx.y*Width+threadldx.x] = Pvalue;
}
Ly ty
K tX

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 5
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Step 5: Kernel Invocation
(Host-side Code)

I/ Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 51
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Only One Thread Block Used

* One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd

 Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md and
Nd elements
— Compute to off-chip memory
access ratio close to 1:1 (not very
high)
o Size of matrix limited by the
number of threads allowed in a
thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Step 7: Handling Arbitrary Sized Square
Matrices (will cover later)

e Have each 2D thread block to
compute a (TILE_ WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE_WIDTH)? threads

e Generate a 2D Grid of

QWID H/TILE W

You Still need to put a loop — by
around the kernel call for cases TILE_WIDTH
where WIDTH/TILE_WIDTH ty

IS greater than max grid size
(64K)! bx |tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 5
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Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign
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Compiling a CUDA Program

float4 me = gx[gtid];
me.x += me.y * me.z;

R

Virtual

Physic

Target code

Id.global.v4.f32 {$f
mad . 32 $f1

© David KirTkiNViDiA and Wen-mei W Hwu, 2007-2010
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Parallel Thread
eXecution (PTX)

— Virtual Machine
and ISA

— Programming
model
— Execution

resources and
state

1,$F3,$F5,$F7}, [$ro+0];
, $f5, $F3, $f1;
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Compilation

 Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool
— PTX
* Object code directly
 Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Linking

* Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 57
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Debugging Using the
Device Emulation Mode

* An executable compiled in device emulation
mode (nvcc -deviceemu) runs

completely on the host using the CUDA

runtime

— No need of any device and CUDA driver
— Each device thread i1s emulated with a host thread

* Running in device emulation mode, one can:

— Use host native debug support (breakpoints, inspection, etc.)
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and vice-
versa
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Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

« Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode
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Floating Point

 Results of floating-point computations will
slightly differ because of:
— Different compiler outputs, Instruction sets

— Use of extended precision for intermediate results

» There are various options to force strict single precision
on the host
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COMPUTATIONAL THINKING

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Objective

e To provide you with a framework based on
the techniques and best practices used by
experienced parallel programmers for
— Thinking about the problem of parallel

programming
— Discussing your work with others

— Addressing performance and functionality issues
In your parallel program

— Using or building useful tools and environments
o owis i ADAGLSIANAING, £a5e studies and projects 2
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Fundamentals of Parallel
Computing
 Parallel computing requires that

— The problem can be decomposed into sub-
problems that can be safely solved at the same
time

— The programmer structures the code and data to
solve these sub-problems concurrently

* The goals of parallel computing are

— To solve problems In less time, and/or
The problems must be large enough to justify parallel

computing and to exhibit exploitable concurrency.
© pavid kiranhith AEAHEMELREIHELSOTULIOTNS 63
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A Recommended Reading

Mattson, Sanders, Massingill, Patterns for
Parallel Programming, Addison Wesley,
2005, ISBN 0-321-22811-1.

— We draw quite a bit from the book

— A good overview of challenges, best practices,
and common techniques in all aspects of parallel
programming
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Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm so that
concurrency can be exploited

3) To implement the algorithm in a suitable
programming environment

4) To execute and tune the performance of the

code on a parallel svstem
Unfortunately, these have not been separated into levels of

abstractions that can be dealt with independently.
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Challenges of Parallel
Programming

 Finding and exploiting concurrency often requires looking
at the problem from a non-obvious angle
— Computational thinking (J. Wing)

« Dependences need to be identified and managed

— The order of task execution may change the answers
» Obvious: One step feeds result to the next steps

» Subtle: numeric accuracy may be affected by ordering steps that are
logically parallel with each other

« Performance can be drastically reduced by many factors
— Overhead of parallel processing
— Load imbalance among processor elements
— Inefficient data sharing patterns
— Saturation of critical resources such as memory bandwidth
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Shared Memory vs. Message
Passing

« We will focus on shared memory parallel
programming
— This is what CUDA is based on

— Future massively parallel microprocessors are expected
to support shared memory at the chip level
e The programming considerations of message
passing model is quite different!

— Look at MPI (Message Passing Interface) and its
relatives such as Charm++
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Finding Concurrency in Problems

 |dentify a decomposition of the problem into sub-
problems that can be solved simultaneously

— A task decomposition that identifies tasks for potential
concurrent execution

— A data decomposition that identifies data local to each task

— A way of grouping tasks and ordering the groups to satisfy
temporal constraints

— An analysis on the data sharing patterns among the
concurrent tasks

— A design evaluation that assesses of the quality the choices
made in all the steps
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Finding Concurrency — The
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Task Decomposition

 Many large problems can be naturally
decomposed into tasks — CUDA kernels are
largely tasks

— The number of tasks used should be adjustable to
the execution resources available.

— Each task must include sufficient work in order to
compensate for the overhead of managing their
parallel execution.

“In an ideal world, the compiler would find tasks for the
programmer. Unfortunately, this almost never happens.”
- Mattson, Sanders, Massingill
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Task Decomposition Example -
Square Matrix Multiplication

e P=M*N of WIDTH ¢ WIDTH

— One natural (sub-
problem) produces one
element of P

— All tasks can e)yaotttatn
parallel in this

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Task Decomposition Example —

Molecular Dynamics
« Simulation of motions of a large molecular system

e For each atom, there are natural tasks to calculate
— Vibrational forces
— Rotational forces
— Neighbors that must be considered in non-bonded forces
— Non-bonded forces
— Update position and velocity
— Misc physical properties based on motions

e Some of these can go in parallel for an atom

It Is common that there are multiple ways to decompose any
oD given problem.
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NAMD

PatchList Data
Structure
k4 Force & Energy
SPEC_NAMD A A A Calculation
1 Inner Loops

/144 iterations ('per
patch) |

/
6 Different NAMD

Configurations

(all independent) Independent

lterations
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Data Decomposition

e The most compute intensive parts of many large
problem manipulate a large data structure

— Similar operations are being applied to different parts of
the data structure, in a mostly independent manner.

— This is what CUDA is optimized for.

» The data decomposition should lead to
— Efficient data usage by tasks within the partition

— Few dependencies across the tasks that work on different
partitions

— Adjustable partitions that can be varied according to the
hardware characteristics
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Data Decomposition Example -
Square Matrix Multiplication

e Row blocks

— Computing each partition requires
access to entire N array

e Square sub-blocks
— Only bands of M and N are needed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Tasks Grouping

e Sometimes natural tasks of a problem can be
grouped together to improve efficiency

— Reduced synchronization overhead — all tasks in the
group can use a barrier to wait for a common
dependence

— All tasks in the group efficiently share data loaded into a
common on-chip, shared storage (Shard Memaory)

— Grouping and merging dependent tasks into one task
reduces need for synchronization

— CUDA thread blocks are task grouping examples.
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Task Grouping Example -
Square Matrix Multiplication

o Tasks calculating a P sub-block

— Extensive input data sharing,
reduced memory bandwidth using
Shared Memory

— All synched in execution

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Task Ordering

o |dentify the data and resource required by a
group of tasks before they can execute them

— Find the task group that creates it

— Determine a temporal order that satisfy all data
constraints
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Task Ordering Example:
Molecular Dynamics

Neighbor List

Vibrational and
Rotational Forces

A 4

Non-bonded Force

A 4 A 4

Update atomic positions and velocities

A 4

Next Time Step
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Data Sharing

« Data sharing can be a double-edged sword

— EXxcessive data sharing can drastically reduce advantage of parallel
execution

— Localized sharing can improve memory bandwidth efficiency
o Efficient memory bandwidth usage can be achieved by
synchronizing the execution of task groups and coordinating
their usage of memory data
— Efficient use of on-chip, shared storage

» Read-only sharing can usually be done at much higher
efficiency than read-write sharing, which often requires
synchronization
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Data Sharing Example —
Matrix Multiplication

« Each task group will finish usage of each sub-block
of N and M before moving on

— N and M sub-blocks loaded into Shared Memory for use
by all threads of a P sub-block

— Amount of on-chip Shared Memory strictly limits the
number of threads working on a P sub-block

» Read-only shared data can be more efficiently
accessed as Constant or Texture data
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Data Sharing Example —
Molecular Dynamics

e The atomic coordinates

— Read-only access by the neighbor list, bonded force, and non-
bonded force task groups

— Read-write access for the position update task group
e The force array

— Read-only access by position update group

— Accumulate access by bonded and non-bonded task groups
e The neighbor list

— Read-only access by non-bonded force task groups
— Generated by the neighbor list task group

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm to translate
concurrency into performance

3) To implement the algorithm in a suitable
programming environment

4) To execute and tune the performance of the code
on a parallel system

Unfortunately, these have not been separated into levels of
abstractions that can be dealt with independently.
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Algorithm

« A step by step procedure that is guaranteed to terminate, such
that each step Is precisely stated and can be carried out by a
computer

— Definiteness — the notion that each step is precisely stated

— Effective computability — each step can be carried out by a computer
— Finiteness — the procedure terminates

« Multiple algorithms can be used to solve the same problem
— Some require fewer steps
— Some exhibit more parallelism
— Some have larger memory footprint than others
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Choosing Algorithm Structure

[ Start }
\

=
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Organize Organize by Organize by }
by Task Data Data Flow

Linear Recursive Linear Recursive Regular Irregular
p \ 4 N - - -V N - \ 4 N - \ 4 : N \ 4 N - \ 4 ~

Task Divide and Geometric Recursive Pineline Event Driven

Parallelism Conquer Decomposition Data P

N\ J N\ J N\ J J N\ J
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Mapping a Divide and Conquer Algorithm

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

_
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Important for Geometric
MNaramnogition

o A framework for memory
data sharing and reuse by
Increasing data access

locality.

— Tiled access patterns allow
small cache/scartchpad
memories to hold on to data
for re-use.

— For matrix multiplication, a
16X16 thread block perform
2*256 = 512 float loads from
device memory for 256 *

operations.

A convenient framework for , ,
organizing threads (tasks)
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Increased Work per Thread for even more

locality

e Each thread computes two element of Pd,,

* Reduced loads from global memory (Md) to
shared memory

e Reduced instruction overhead
— More work done in each iteration

j--
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Double Buffering
- a frequently used algorithm pattern

e One could double buffer the computation, getting better
Instruction mix within each thread
— This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()
Compute current tile

syncthreads()
s

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Load next tile from global memory

Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory
Compute current tile

syncthreads()

} 89




Double Buffering

e Deposit blue tile from register into

shared memory I I|
e Syncthreads
» Load orange tile into register

e Compute Blue tile

* Deposit orange tile into shared
memory

— |

> >
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( (a) Direct summation
A\t At each grid point, sum the
+ |4 . | electrostatic potential from
all charges

.:+ 1—«——. + | (b) Cutoff summation

. ,K, Electrostatic potential from
S O nearby charges summed,;
+ o+ o+ o+ spatially sort charges first
@ o
+ + +7 +

Q[ b '|'@]| (c)Cutoff summation using
L A—ft—1g- direct summation kernel

. nle «|4 Q. .| Spatially sort charges into
‘o 791" |*_*| bins; adapt direct

@ Summation to process a bin
@ .|. .[® @. .| Figure10.2 Cutoff Summation algorithm
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Cut-Off Summation Restores Data
Scalability

1000

CPU-SSE3 '
LargeBin -
w 100 SmallBin - - - :
= SmallBin-Overlap o " = |
§ 10 k DirectSum f_:.,__,-~ Aﬁ,ﬂ i
o A " s
E 1 AT X e
i) T oK e B
5 0.1 ¢ . o "‘..-.'.""i :
8 B Same scalability
i 001 L = _-* among all cutoff
R implementations
0.001 - J J . .
1000 8000 64000 1e+06 8e+06

Volume of potential map (Angstroma)

Scalability and Performance of different algorithms for calculating
electrostatic potential map.
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