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Programming Massively Parallel 
Processors



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

2

Why Massively Parallel Processor
• A quiet revolution and potential build-up

– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until last year, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential 
impact
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GT200 Characteristics
• 1 TFLOPS  peak performance (25-50 times of current high-

end microprocessors)
• 265 GFLOPS sustained for apps such as VMD
• Massively parallel, 128 cores, 90W
• Massively threaded, sustains 1000s of threads per app
• 30-100 times speedup over high-end microprocessors on 

scientific and media applications: medical imaging, 
molecular dynamics

“I think they're right on the money, but the huge performance  
differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s)  
will invite close scrutiny so I have to be careful what I say 
publically until I triple check those numbers.”    

-John Stone, VMD group, Physics UIUC
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Future Apps Reflect a Concurrent 
World

• Exciting applications in future mass computing 
market have been traditionally considered 
“supercomputing applications”
– Molecular dynamics simulation, Video and audio coding and 

manipulation, 3D imaging and visualization, Consumer game 
physics, and virtual reality products 

– These “Super-apps” represent and model physical, 
concurrent world

• Various granularities of parallelism exist, but…
– programming model must not hinder parallel implementation
– data delivery needs careful management



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

7

Stretching Traditional Architectures
• Traditional parallel architectures cover some 

super-applications
– DSP, GPU, network apps, Scientific

• The game is to grow mainstream architectures 
“out” or domain-specific architectures “in”
– CUDA is latter

Traditional applications

Current architecture 
coverage

New applications

Domain-specific
architecture coverage

Obstacles



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

8

Samples of Previous Projects
Application Description Source Kernel % time 
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision 
and print fewer reports 1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D 
graded materials 1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum 
chem, 2-electron repulsion 1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy, 
used in Linpack’s Gaussian elim. routine 952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%
FDTD Finite-Difference Time Domain analysis of 

2D electromagnetic wave propagation 1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s 
configuration in MRI reconstruction 490 33 >99%
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Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248 
• 10× speedup in a kernel is typical, as long as the kernel can occupy 

enough parallel threads
• 25× to 400× speedup if the function’s data requirements and control flow 

suit the GPU and the application is optimized
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GPU HISTORY
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Texture mapping example: painting a world map 
texture image onto a globe object.

Texture Mapping Example
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Triangle Geometry Aliased Anti-AliasedTriangle Geometry Aliased Anti-Aliased

Anti-Aliasing Example
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3D Application
or Game
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Direct3D
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CPU
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An example of separate vertex processor and fragment processor in 
a programmable graphics pipeline

Programmable Vertex and Pixel 
Processors
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Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB     Memory

The restricted input and output capabilities of a shader programming model.
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What is (Historical) GPGPU ?
• General Purpose computation using GPU and graphics API 

in applications other than 3D graphics
– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput
– Fine-grain SIMD parallelism
– Low-latency floating point (FP) computation

• Applications – see //GPGPU.org
– Game effects (FX) physics, image processing
– Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting
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Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the 
graphics API

• Addressing modes
– Limited texture size/dimension

• Shader capabilities
– Limited outputs

• Instruction sets
– Lack of Integer & bit ops

• Communication limited
– Between pixels
– Scatter  a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB       Memory
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CUDA
• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

• Targeted software stack
– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU
– Standalone Driver - Optimized for computation 
– Interface designed for compute – graphics-free API
– Data sharing with OpenGL buffer objects 
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

http://www.opengl.org/
http://www.opengl.org/
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An Example of Physical Reality 
Behind CUDA CPU

(host)
GPU w/ 

local DRAM
(device)
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Parallel Computing on a GPU 

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses application 

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870
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Overview

• CUDA programming model – basic 
concepts and data types

• CUDA application programming interface -
basic

• Simple examples to illustrate basic concepts 
and functionalities

• Performance features will be covered later
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CUDA – C with no shader 
limitations!

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
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CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel
– Is typically a GPU but can also be another type of  parallel processing 

device 

• Data-parallel portions of an application are expressed as device 
kernels which run on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
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• The future of GPUs is programmable processing
• So – build the architecture around the processor

G80 – Graphics Mode
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G80 CUDA mode – A Device Example
• Processors execute computing threads
• New operating mode/HW interface for 

computing
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Extended C
• Declspecs

– global, device, shared, 
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, 

execution management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

__shared__ float region[M];
... 

region[threadIdx] = image[i]; 

__syncthreads()  
... 

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
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gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU  Assembly
foo.s

CPU Host Code 
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “NVIDIA’s Experience with 
Open64,”
www.capsl.udel.edu/conferences/open64/2008
/Papers/101.doc

http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc


© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

30

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)
– Each thread has an ID that it uses to compute 

memory addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
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…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation
• Divide monolithic thread array into multiple 

blocks
– Threads within a block cooperate via shared 

memory, atomic operations and barrier 
synchronization

– Threads in different blocks cannot cooperate
76543210 76543210 76543210
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Host

Kernel 
1

Kernel 
2

Device

Grid 1
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Block
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Block
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Block
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Grid 2

Courtesy: NDVIA

       

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to decide 
what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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CUDA Memory Model Overview
• Global memory

– Main means of communicating 
R/W Data between host and 
device

– Contents visible to all threads
– Long latency access

• We will focus on global 
memory for now
– Constant and texture memory 

will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C 
programming language

Low learning curve

• The hardware is designed to enable
lightweight runtime and driver

High performance
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CUDA Device Memory Allocation
• cudaMalloc()

– Allocates object in the 
device Global Memory

– Requires two parameters
• Address of a pointer to the 

allocated object
• Size of of allocated object

• cudaFree()
– Frees object from device 

Global Memory
• Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA Device Memory Allocation (cont.)

• Code example: 
– Allocate a  64 * 64 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);
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CUDA Host-Device Data Transfer
• cudaMemcpy()

– memory data transfer
– Requires four parameters

• Pointer to destination 
• Pointer to source
• Number of bytes copied
• Type of transfer 

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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CUDA Host-Device Data Transfer
(cont.)

• Code example: 
– Transfer a  64 * 64 single precision float array
– M is in host memory and Md is in device memory
– cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic 
constantscudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

39

CUDA Keywords
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CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable 
from the:

Executed 
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used 
together
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CUDA Function Declarations (cont.)

• __device__ functions cannot have their 
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments
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Calling a Kernel Function – Thread Creation
• A kernel function must be called with an execution 

configuration:
__global__ void KernelFunc(...);

dim3 DimGrid(100, 50);    // 5000 thread blocks 

dim3 DimBlock(4, 8, 8);   // 256 threads per block 

size_t SharedMemBytes = 64; // 64 bytes of shared 
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes 
>>>(...);

• Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking
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A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example that 
illustrates the basic features of memory and 
thread management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device
– Assume square matrix for simplicity
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Programming Model:
Square Matrix Multiplication Example
• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one element of P
– M and N are loaded WIDTH times from 

global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{   

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
}

i

k

k

j
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{

int size = Width * Width * sizeof(float); 
float* Md, Nd, Pd;
…

1. // Allocate and Load M, N to device memory 
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)
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Step 3: Output Matrix Data Transfer
(Host-side Code)

2.   // Kernel invocation code – to be shown later
…

3.    // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}
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Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;
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Step 4: Kernel Function  (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k
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// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code) 
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Only One Thread Block Used
• One Block of threads compute 

matrix Pd
– Each thread computes one 

element of Pd
• Each thread

– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and 

addition for each pair of Md and 
Nd elements

– Compute to off-chip memory 
access ratio close to 1:1 (not very 
high)

• Size of matrix limited by the 
number of threads allowed in a 
thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd
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Step 7: Handling Arbitrary Sized Square 
Matrices (will cover later)

• Have each 2D thread block to 
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix
– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of 
(WIDTH/TILE_WIDTH)2 blocksMd

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop 
around the kernel call for cases 
where WIDTH/TILE_WIDTH 
is greater than max grid size 
(64K)!

TILE_WIDTH
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Some Useful Information on 
Tools
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Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU 

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread 
eXecution (PTX)
– Virtual Machine 

and ISA
– Programming 

model
– Execution 

resources and 
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;
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Compilation
• Any source file containing CUDA language 

extensions must be compiled with NVCC
• NVCC is a compiler driver

– Works by invoking all the necessary tools and 
compilers like cudacc, g++, cl, ...

• NVCC outputs:
– C code (host CPU Code)

• Must then be compiled with the rest of the application using another tool

– PTX
• Object code directly
• Or, PTX source, interpreted at runtime
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Linking

• Any executable with CUDA code requires two 
dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)
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Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs 
completely on the host using the CUDA 
runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-

versa
– Detect deadlock situations caused by improper usage of 

__syncthreads
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Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, 

so simultaneous accesses of the same memory
location by multiple threads could produce 
different results.

• Dereferencing device pointers on the host or 
host pointers on the device can produce correct 
results in device emulation mode, but will 
generate an error in device execution mode



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

60

Floating Point

• Results of floating-point computations will 
slightly differ because of:
– Different compiler outputs, instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision 
on the host
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Objective

• To provide you with a framework based on 
the techniques and best practices used by 
experienced parallel programmers for
– Thinking about the problem of parallel 

programming
– Discussing your work with others
– Addressing performance and functionality issues 

in your parallel program
– Using or building useful tools and environments
– understanding case studies and projects
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Fundamentals of Parallel 
Computing 

• Parallel computing requires that
– The problem can be decomposed into sub-

problems that can be safely solved at the same 
time

– The programmer structures the code and data to 
solve these sub-problems concurrently

• The goals of parallel computing  are
– To solve problems in less time, and/or
– To solve bigger problems, and/or
– To achieve better solutions

The problems must be large enough to justify parallel 
computing and to exhibit exploitable concurrency.
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A Recommended Reading

Mattson, Sanders, Massingill, Patterns for 
Parallel Programming, Addison Wesley, 
2005, ISBN 0-321-22811-1.

– We draw quite a bit from the book
– A good overview of challenges, best practices, 

and common techniques in all aspects of parallel 
programming
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Key Parallel Programming Steps

1) To find the concurrency in the problem
2) To structure the algorithm so that 

concurrency can be exploited
3) To implement the algorithm in a suitable 

programming environment
4) To execute and tune the performance of the 

code on a parallel system
Unfortunately, these have not been separated into levels of 

abstractions that can be dealt with independently.
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Challenges of Parallel 
Programming

• Finding and exploiting concurrency often requires looking 
at the problem from a non-obvious angle
– Computational thinking (J. Wing)

• Dependences need to be identified and managed
– The order of task execution may change the answers

• Obvious: One step feeds result to the next steps
• Subtle: numeric accuracy may be affected by ordering steps that are 

logically parallel with each other

• Performance can be drastically reduced by many factors
– Overhead of parallel processing
– Load imbalance among processor elements
– Inefficient data sharing patterns
– Saturation of critical resources such as memory bandwidth



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

67

Shared Memory vs. Message 
Passing

• We will focus on shared memory parallel 
programming
– This is what CUDA is based on
– Future massively parallel microprocessors are expected 

to support shared memory at the chip level
• The programming considerations of message 

passing model is quite different!
– Look at MPI (Message Passing Interface) and its 

relatives such as Charm++
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Finding Concurrency in Problems 
• Identify a decomposition of the problem into sub-

problems that can be solved simultaneously
– A task decomposition that identifies tasks for potential 

concurrent execution
– A data decomposition that identifies data local to each task
– A way of grouping tasks and ordering the groups to satisfy 

temporal constraints
– An analysis on the data sharing patterns among the 

concurrent tasks
– A design evaluation that assesses of the quality the choices 

made in all the steps
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Finding Concurrency – The 
Process

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

This is typically a iterative process.
Opportunities exist for dependence analysis to play earlier 

role in decomposition. 
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Task Decomposition
• Many large problems can be naturally 

decomposed into tasks – CUDA kernels are 
largely tasks
– The number of tasks used should be adjustable to 

the execution resources available.
– Each task must include sufficient work in order to 

compensate for the overhead of managing their 
parallel execution.

– Tasks should maximize reuse of sequential 
program code to minimize effort.

“In an ideal world, the compiler would find tasks for the 
programmer. Unfortunately, this almost never happens.”

- Mattson, Sanders, Massingill
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Task Decomposition Example -
Square Matrix Multiplication

• P = M * N of WIDTH ● WIDTH
– One natural task (sub-

problem) produces one 
element of P

– All tasks can execute in 
parallel in this example.

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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Task Decomposition Example –
Molecular Dynamics

• Simulation of motions of a large molecular system
• For each atom, there are natural tasks to calculate

– Vibrational forces
– Rotational forces
– Neighbors that must be considered in non-bonded forces
– Non-bonded forces
– Update position and velocity
– Misc physical properties based on motions

• Some of these can go in parallel for an atom

It is common that there are multiple ways to decompose any 
given problem.
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NAMD

SPEC_NAMD

6 Different NAMD
Configurations

(all independent)

SelfComputes Objects

PairComputes Objects

….... 144 iterations (per 
patch)

Independent 
Iterations

…
.

Force & Energy 
Calculation
Inner Loops 

1872 iterations
(per patch pair)

…..

PatchList Data 
Structure
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Data Decomposition
• The most compute intensive parts of many large 

problem manipulate a large data structure
– Similar operations are being applied to different parts of 

the data structure, in a mostly independent manner.
– This is what CUDA is optimized for.

• The data decomposition should lead to 
– Efficient data usage by tasks within the partition
– Few dependencies across the tasks that work on different 

partitions
– Adjustable partitions that can be varied according to the 

hardware characteristics
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Data Decomposition Example -
Square Matrix Multiplication

• Row blocks
– Computing each partition requires 

access to entire N array
• Square sub-blocks

– Only bands of M and N are needed
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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Tasks Grouping
• Sometimes natural tasks of a problem can be 

grouped together to improve efficiency
– Reduced synchronization overhead – all tasks in the 

group can use a barrier to wait for a common 
dependence

– All tasks in the group efficiently share data loaded into a 
common on-chip, shared storage (Shard Memory)

– Grouping and merging dependent tasks into one task 
reduces need for synchronization

– CUDA thread blocks are task grouping examples.
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P

Task Grouping Example -
Square Matrix Multiplication

• Tasks calculating a P sub-block
– Extensive input data sharing, 

reduced memory bandwidth using 
Shared Memory

– All synched in execution

M

N

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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Task Ordering

• Identify the data and resource required by a 
group of tasks before they can execute them
– Find the task group that creates it
– Determine a temporal order that satisfy all data 

constraints
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Task Ordering Example:
Molecular Dynamics

Neighbor List

Vibrational and 
Rotational Forces

Non-bonded Force

Next Time Step

Update atomic positions and velocities



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

80

Data Sharing
• Data sharing can be a double-edged sword

– Excessive data sharing can drastically reduce advantage of parallel 
execution

– Localized sharing can improve memory bandwidth efficiency

• Efficient memory bandwidth usage can be achieved by 
synchronizing the execution of task groups and coordinating 
their usage of memory data
– Efficient use of on-chip, shared storage

• Read-only sharing can usually be done at much higher 
efficiency than read-write sharing, which often requires 
synchronization
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Data Sharing Example –
Matrix Multiplication

• Each task group will finish usage of each sub-block 
of N and M before moving on
– N and M sub-blocks loaded into Shared Memory for use 

by all threads of a P sub-block
– Amount of on-chip Shared Memory strictly limits the 

number of threads working on a P sub-block
• Read-only shared data can be more efficiently 

accessed as Constant or Texture data
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Data Sharing Example –
Molecular Dynamics

• The atomic coordinates
– Read-only access by the neighbor list, bonded force, and non-

bonded force task groups
– Read-write access for the position update task group

• The force array
– Read-only access by position update group
– Accumulate access by bonded and non-bonded task groups

• The neighbor list
– Read-only access by non-bonded force task groups
– Generated by the neighbor list task group
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Key Parallel Programming Steps
1) To find the concurrency in the problem
2) To structure the algorithm to translate 

concurrency into performance
3) To implement the algorithm in a suitable 

programming environment
4) To execute and tune the performance of the code 

on a parallel system

Unfortunately, these have not been separated into levels of 
abstractions that can be dealt with independently.
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Algorithm
• A step by step procedure that is guaranteed to terminate, such 

that each step is precisely stated and can be carried out by a 
computer
– Definiteness – the notion that each step is precisely stated
– Effective computability – each step can be carried out by a computer
– Finiteness – the procedure terminates

• Multiple algorithms can be used to solve the same problem
– Some require fewer steps
– Some exhibit more parallelism
– Some have larger memory footprint than others
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Choosing Algorithm Structure

Start

Organize 
by Task

Organize by 
Data

Organize by 
Data Flow

Linear Recursive Linear Recursive

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Regular Irregular

Pipeline Event Driven
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Mapping a Divide and Conquer Algorithm

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements 

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10
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Tiled (Stenciled) Algorithms are 
Important for Geometric 

Decomposition • A framework for memory 
data sharing and reuse by 
increasing data access 
locality.
– Tiled access patterns allow 

small cache/scartchpad 
memories to hold on to data 
for re-use.

– For matrix multiplication, a 
16X16 thread block perform 
2*256 = 512 float loads from 
device memory for 256 * 
(2*16) = 8,192 mul/add 
operations. 

• A convenient framework for 
organizing threads (tasks)
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Md
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Increased Work per Thread for even more 
locality

• Each thread computes two element of Pdsub

• Reduced loads from global memory (Md) to 
shared memory

• Reduced instruction overhead
– More work done in each iteration

Pdsub
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Double Buffering 
- a frequently used algorithm pattern

• One could double buffer the computation, getting better 
instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()
}
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Double Buffering
• Deposit blue tile from register into 

shared memory
• Syncthreads
• Load orange tile into register
• Compute Blue tile
• Deposit orange tile into shared 

memory
• ….
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(a) Direct summation
At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin
Figure 10.2 Cutoff Summation algorithm
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Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for calculating 
electrostatic potential map.

Cut-Off Summation Restores Data 
Scalability
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