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In this work, we describe a method for automatically identifying the set of all points in concentration space
that represent outlet compositions of some network of discretely fed batch reactors for a given reaction set
with known kinetics. This so-called batch attainable region (BAR) is dependent on the batch network’s feed
and total operating time, and it is shown to be quantifiable using the Infinite DimEnsionAl State-space (IDEAS)
framework. We first establish that a simple batch reactor model possesses the properties that allow application
of the IDEAS framework. We then formulate the resulting IDEAS Infinite Linear Program (ILP) whose
solution is guaranteed to identify the globally optimal network of batch reactors. We subsequently use a
simple transformation of this IDEAS ILP that leads us to propose two algorithms that are related to the
construction of the true BAR. The first is a “Shrink-Wrap”-like algorithm that is similar to that previously
reported [Manousiouthakis et al. The Shrink-Wrap Algorithm for the Construction of the Attainable Region:
Application of the IDEAS FrameworkComput. Chem. En@004 28, 1563] and creates increasingly accurate
approximations of a set guaranteed to contain the true BAR for all network operating times. The second is
a breadth-first algorithm that creates increasingly accurate inner approximations to the BAR for a given network
operating time. These two algorithms are applied to an example from the literature and are shown analytically
to converge in the limit to the true BAR.

Introduction to an example from the literature and are shown to converge in

. - the limit to the true BAR.
Evaluation of limits on the performance of reactors and

reactor networks is crucial to the economic success of any Background
chemical process network. Consequently, the analysis and design
of reactors and reactor networks have been the primary foci of ~ Automatic (computer-based) reactor network synthesis (RNS)
process systems engineering research. Previous works on nonevolved as a field of its own starting in the 1980s. Chitra and
steady-state reactor networks have addressed techniques foGovinc® performed work in 1981 on the identification of optimal
analyzing, modeling, or optimizing single-batch units, but they reactor types and configurations using a super-structure-based
make little mention of how units can be used in conjunction or approach. They later expanded on their earlier work, applying
what theoretical limits exist on the performance of these types a superstructure-based method for optimal RNS for both
of non-steady-state systems. Because non-steady-state networksothermal and non-isothermélreaction systems. OAgon-
are fundamentally different from their steady-state counterparts, sidered the optimization of continuously stirred tank reactors
identification of these performance limits requires careful (CSTRs) in series using Bellmafi'slynamic programming.
consideration of the effect of time (both reaction and holding Pibouleau et al.proposed a mixed-integer nonlinear program-
time) and causal relationships between reactors. ming (MINLP) formulation for the automatic synthesis of

The goal of this work is to apply the Infinite DimEnsionAl  networks featuring CSTRs and single-stage separation units. In
State-space (IDEAS) framework to construction of the batch 1994, Omtveit et al. presented a RNS method that also included
attainable region (BAR) for non-steady-state networks of batch a separation network as a separate sub-proBléat paper also
reactors; this is the first application of IDEAS to a network of gives an extensive literature review of work on RNS to that
dynamic process units. The remainder of the work is structured point. Smith and Pantelidggjave another reacteiseparator
as follows: first, we give background information on reactor network superstructure-based formulation in their 1995 work.
network synthesis (RNS), the IDEAS conceptual framework, Bikic and Glavic produced a series of papers on a superstructure-
and attainable region (AR) construction. Next, the applicability based nonlinear programming (NLP) method for RNS for
of IDEAS to batch RNS is established and the relevant IDEAS networks with multiple multicomponent feetfsnon-isothermal
infinite linear program (ILP) is formulated. We then outline a complex reaction schemésand reactor/separator networks.
variable transformation which leads to two algorithms that are Their 1996 work stated that “the proposed design procedure
related to the construction of the true BAR: the first is similar can also be used to support the design of batch processes”, but
to the “Shrink-Wrap” algorithm that was developed by Man- that work did not specifically address the claim. Esparta &t al.
ousiouthakis et al.for the construction of the steady-state AR proposed a superstructure-based method for RNS using iso-
and creates increasingly accurate approximations of a setthermal two-phase CSTRs in 1998. Hua et al. proposed a NLP
guaranteed to contain the true BAR for all network operating model for RNS that included “differential recycling DSR”
times. The second is a breadth-first algorithm that creates reactor unit$* Mehta and Kokoss!8 proposed a stochastic
increasingly accurate inner approximations to the BAR for a optimization approach to non-isothermal and multiphase RNS.
given network operating time. These two algorithms are applied Pahor et al. proposed a superstructure/MINLP approach for
optimizatiort® and then, in later work, applied the method to

* To whom correspondence should be addressed. Tel.: 310 206 0300.the non-isothermal production of allyl chloridéMoreover, in
Fax: 310 206 4107. E-mail address: vasilios@ucla.edu. 1999, Grossman et al. gave a review of advances in mathemati-
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cal programming for process systems synth&sthjs review mum mixed reactor network® exothermic reversible reaction
has sections devoted to both RNS and AR construction theory, kinetics!! and reaction systems with external heating and
respectively. cooling#2

The RNS problem was also approached using the methods In 1997, Feinberg and Hildebraftéireported on the deter-
of optimal control; the work by Ari® was significant in this mination of the optimal reactor network configuration using
field, addressing the problem of optimal control of a batch the geometric properties of the AR extreme points in the first
reactor. In 1970, Paynter and Haskhformulated an optimal ~ part of a three-part series. This work was later expanded by
control problem for determining the optimal reactor type for a Feinberg in 1999 to a more extensive set of mathematical
single reactor using an axial dispersion model. Waghmare andProperties of the AR boundatyand in 2000 to properties of
Lim applied optimal control theory to single isothermal reactor C'itical DSR$® and CSTR® whose outlets are on the AR
systemd! and later applied the same techniques to complex Poundary. In 1999, McGregor et &lexamined the relationship
reaction scheme& Achenie and Biegl&# 25 proposed an NLP between the geometric AR identification method and Pontrya-

method for RNS that used superstructures in a “target-based”gmys. miﬁm'lém pfr.mc[ple. Roc;]nedy et iﬁ..ehxtenged th? geo;)
approach. Godorr et &f.outlined optimal control policies for m‘itncd thl ezng |catt)|on metl Olgg; I\Ilg el.rd;geg.s'ogs Y
reactor structures on the AR boundary, using temperature agcXtending the subspace. in » NISOll utined a

the control variable. Hillestad formulated the RNS problem as method' for |dent|f}/|ng the 'A.‘R for a two-phase reaction .
. . . . separation system; they applied the method to the production
an optimal control problem and then examined its solution for

the isothermal and non-isotherma cases and separation of dimethyl ether (DME) from methanol and
) methyltert-butyl ether (MTBE) from isobutene and methanol.
The IDEAS conceptual framework was proposed by Man- That same year, Smith and MalSfeutlined an application of
ousiouthakis et dl.in an effort to overcome two limitations of AR identification in the free-radical polymerization of poly-
superstructure-based optimal process network synthesis meth{methyl methacrylate) (PMMA). Later, in 2002, Gadewar étal.
ods: (i) the considered superstructure may impose unforeseenanalyzed networks of two-phase CSTRs that are surrogates for
limitations on the eventually obtained optimal network, and (i) reactive distillation units to find an AR for such networks.
the nonconvex nature of the resulting superstructure-basedKauchali et aP? used the earlier methods of Nisoli etfalto
optimization formulations (NLP, MINLP, etc.) only guar- identify candidate ARs for the water-gas shift (WGS) reaction,
antees local optimality of the obtained optimal network. which is a problem that also was previously studied by Omtveit
IDEAS overcomes these limitations by considering all possible et al>3
process network configurations and establishing that most More recently, the IDEAS conceptual framework has also
commonly applied process models can be used to yield been applied in the construction of the AR for reactor networks.
optimization formulations with an infinite number of variables Burri et al>*first presented several IDEAS-based infinite linear
and an infinite number of linear constraints. The ability of programming (ILP) formulations of the AR construction prob-
IDEAS to address several long-standing process network lem in 2002. That same year, Kauchali ePaindependently
synthesis problems has been demonstrated on the minimumdeveloped an IDEAS-like linear programming model for
utility cost (MUC) problem for mass exchange netwdfks extending candidate ARs. Manousiouthakis étthen presented
(MENS), the minimum plate aréand MUGC! problems for properties of one of the aforementioned IDEAS ILPs, which
heat-integrated complex distillation networks, the minimum total allowed construction of the true AR without explicit solution
annualized cost (MTAC) problem for separation netwétksd of the ILP using a so-called “Shrink-Wrap” algorithm. Concur-
power cycle networkd? the MUC problem for heat and power ~ 'entand independent work by Abraham and Feintsgnpposed
integrated complex distillation networké.and the minimum @ method of bounding hyperplanes to identify subsets of a

total liquid hold-up problem for complex reactive distillation ~SUP€rset containing the AR that are guaranteed not to contain
networks3s the AR. More recently, Zhou and Manousiouthakis demonstrated

that variants of the Shrink-Wrap algorithm are applicable to
the AR construction for nonideal axial dispersion reactor

odel§” and variable-density fluid reactor modéfstespec-

ively.

There is extensive work in the literature that addresses single-
batch reactor optimization and batch process scheduling. Rip-
pin>® gave a review of studies of individual batch units and their
optimization in 1983. That same year, he also wrote an overview
of general structures for batch process systéhhte followed
up these reviews 10 years later with the current progress in the

The attainable region (AR) for a given set of reactions and
reactor technologies is defined as the set of all points in
concentration space that are attainable through reaction an
mixing from a given feed point; this definition has been widely
credited to Horn in 1964° Quantification of the AR for reactor
networks is an important problem in chemical process optimiza-
tion, because knowledge of the AR quantifies, for process
designers, the fundamental limitations on the performance of
chemical process flowsheets. Identification of the particular
reactor-or, more generally, the reactor networwhose output  fie|4 of engineering and design of batch procegdeklaitis?
concentration vector is an extreme point of the AR is often the gave a review of progress and issues in computer-aided batch
objective of reactor engineering studies. Work by Gavalas process design in 1990. Leviémwrote on the optimal design
1968 on nonlinear differential equations for chemical reactors of patch, discrete semi-batch, and continuous semi-batch reactor
introduced the concept of the invariant manifold and gives ynits in his 1992 work. Terwiesch et #l.surveyed industry
example two-dimensional (2D) plots of the conversion of needs for batch processes and suggested both optimal control
different species. Many of the proposed AR construction methods for improvements and also further research problems
methods in the literature are based on a geometric approach tqo be addressed. Yi and Reklaffishave performed work on
AR identification that was outlined in the 1987 work by Glasser the optimal synthesis of batch storage networks for chemical
et al38 This geometric approach has spawned numerous otherprocesses. Maraveli®s examined the problem of optimal
works whose objective was to identify the AR for adiabatic, scheduling of single-stage and multistage batch processes using
variable density reactor network%,segregated and maxi- a mixed-integer sequencing algorithm. Later work by Sung and



Maravelia§’ defines a “process attainable region” for production
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outlet time, 4 the reactor technology flagF the reactor

planning and scheduling problems with limited equipment volumetric “feed” (reactor volume); the reactor volumetric

capacity.

Application of IDEAS to Batch Reactor Network
Synthesis

“effluent” (constant densityF = F), and N the number of
species considered.

The “reactor technology flagA] is a convention that is used
to allow holding tanks to be part of the formulationlf= 1,

. the unit is a batch reactor with nonzeRp defined by model
The fundamental difference between batch and steady-stateeqs 2-5.1f 1 = 0, there is no reaction and the unit is a holding

reactor network synthesis problems is the time dependence of,; 1\ that is defined by eq 6 with holding tim@" — t". For
the underlying batch reactor process. In a network context, this|pEaS to be applied to this model, we must the identify vectors
time dependence immediately raises the issue of “causality”; |, v, andy, and information maps Mand M (which

in a batch rea}ctor network, a reactor cannot “feed” another together, comprise M) that satisfy the following properties:
reactor unless its contents are unloaded before the other reactor’s

loading time. To examine causality in a straightforward manner, Uy vy M (U,)-U,

we consider that batch reactor loading, unloading, and mixing M: u= [u ] —y= ’ ] = ’M ) ] @)
operations can only occur at prespecified discrete tiftest;, 2 % 252

ty, ..., tn} and are instantaneous. For the remainder of this work . !

we will refer to the reactor inlet and outlet volumes (which are W€ Will define these vectors as follows:

equal, because of our assumption of constant density) as flow T _

rates; this is a slight misnomer, because each reactor’s inlet and u=[F=[Fl=y (8)
outlet are discrete (i.e., there is no temporal nature to the flow u, = [C(1) C@2) ... CN) tiy tou 4] (9)
into or out of a reactor), but the convention of calling them

flow rates makes the analogy between batch reactor networks Y, =[C(1) C(2) ... C(N)] (10)

and other steady-state reactor networks clearer. The inlet and
outlet volumes of a batch reactor unit are extensive propertiesBecausey; = uy, the map M is just the identity map. We
that do not affect the units’ intensive properties, such as speciesyniquely define the map Wby assuming in this work that the

concentrations, temperature, pressure, etc.

set of differential equations in eq 2 with initial conditions in eq

The standard model for a batch reactor is outlined in almost 3 admits a solution and that the solution is unique. Sufficient

any reaction engineering textbook (see the work of Leven&piel,
Froment and Bischoff? Schmidt’® Fogler/* Nauman’? Raw-

conditions on the properties of the rate vector for this to be
true can be found in theorem 2.4 of KhdfilEach of the outlet

lings,”® etc.). More recently, there have been more-complicated concentrations can be found using the information uin
batch reactor models proposed in the literature that account fortherefore, we can define the map, Ms follows:

imperfect mixing and continuously fed batch operafién;
however, we will not specifically address these complications
in this work. To apply IDEAS to the batch reactor network
synthesis problem, we must first prove that the batch reactor
model is flow-invariant with respect to its intensive properties.
Second, we must prove that the operations of mixing and
splitting in the distribution network are linear. A more formal
mathematical method for showing the applicability of IDEAS
to a unit model has been previously outlined in Zhou &t al.
We define our IDEAS inletoutlet information map (M) for
the batch reactor model as follows:

. egs 2-6
My u, Y,

Therefore, this batch reactor model satisfies the first necessary
property for the applicability of the IDEAS framework. The
second propertythat the operations of mixing, splitting, and
recycle are linearis obvious, given that the intensive properties
of the units are considered to be known.

Graphical Representation of Batch Reactor Networks

As an example, consider a simple batch reactor network that
consists of three reactors and two holding tanks. Reactor 1 is
fed at some initial time (we will call itg) and runs until its
outlet timet;. At that time, the reactor 1 outlet is split into three

U=[é(1) é(2) C(N) tin fout 2 f:]M,y:
[C(1) C2) ... C(N) F] (1)

dCi(t) . . A . ; '
i =1 -R ‘ parts, which are fed into reactor 2, reactor 3, and holding tank
iFA=1 dt RGO, G, - GO ..., C\(D) 1, respectively. Reactor 2 operates franjwhich is the output
Oi=1,..,N (2 time of reactor 1) until time, and then its output enters holding
e, AN . tank 2. Reactor 3 operates fromuntil t3, at which time its
ifA=1 ClH)=G) Hi=1..N @) outlet is mixed with the contents of holding tanks 1 and 2 to
. N A ou . form the network outlet. This simple batch reactor network can
ifA=1: C@) =Gt ) Or=1,...N (4) be visualized in a time-axis form, as shown in Figure 1.
£ 1. & - . _ [4in jou We can also represent this same process flowsheet in an
fA=1 GH=0 Oi=1,..N; De=[t" "] (§) OP/DN form, by rearranging the process network diagram such
if =0: C(i) = C(i) Oi=1,..N (6) that all the mixing and splitting operations are contained in the

distribution network (DN) and all unit operations (the three batch
reactors and two holding tanks) are contained in the operator
block (OP). This method of representing a flowsheet can be
used to best visualize the IDEAS formulation of the batch reactor
network problem. In the IDEAS formulation, all possible
reactors are considered in the formulation of the optimization
problem; therefore, instead of a diagram with three reactors,
there is an infinite number of batch reactors and holding tanks

whereu is the reactor inlet information vectoy, the reactor
outlet information vector, M the nonlinear reactor information
input—output map,Ci(t) the concentration of speciésn the
reactor at time, R the rate of generation of specie@n units

of moles per volume per unit timel;(i) the concentration of
specied in the reactor inletC(i) the concentration of species
i in the reactor outleti™ the reactor inlet timet°Ut the reactor
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Figure 1. Batch reactor network flowsheet in time axis form.
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Figure 2. IDEAS representation for batch reactor network problem.

Table 1. Definition of Symbols Used in Figure 2

variable definition
= flow out of the DN/overall network
Fx flow into the DN/overall network
ﬁ% flow into the mth reactor/holding tank,
operating from time; until time ;
Fl flow out of thelth reactor/holding tank,
operating from time; until time ;
F% flow from thelth reactor/holding tank, which
operates from timé until timeft; to the
mth reactor/holding tank which operates
from timet; until time tg
|:r;;°k flow from DN inlet to themth reactor/
holding tank, operating from time tintil time t
F‘j}* flow to DN outlet from theth reactor/
holding tank, operating from timguntil timet,
ch property vector for the flovir), = [C (1) C/(2) ... CL(N)IT
cl property vector for the flovF} = [C/(1) C!(2) ...C/(N)]"
C- property vector for the DN outlet [C+(1) C«(2) ...C+(N)]T
C« property vector for the DN inlet [C+(1) C«(2) ... C<(N)]T

included in OP as in Figure 2. The variables shown in Figure
2 are defined in Table 1.

Note that (i) the network outlet and all reactors in the network
may only be fed at their designated inlet time, (ii) the network
inlet time is arbitrarily designated dg and (iii) the network

outlet time ist,. Thus,n designates the number of times that
the reactor/holding tank contents are allowed to mix=(3 in

the example above). Also note that holding tanks are implicitly
included in this formulation as units in the OP block (no holding
occurs in the DN).

IDEAS ILP Formulation for Batch Reactor Network
Synthesis

The IDEAS optimization problem outlined below considers
every possible reactor and holding tank unit and all causally
feasible interconnections in the DN, thereby guaranteeing that
all possible batch reactor networks are included in the math-
ematical problem formulation. Without any loss of generality,
each unit's input information vectow, is considered to be
known, and thus, using the information map M, its output
information vectory, is also known. Knowledge of each unit's
input and output information vectogs andu, will be shown
below to lead to an IDEAS formulation of the optimal batch
reactor network synthesis (RNS) problem that is an infinite linear
program (ILP). Before we can outline this IDEAS ILP, we first
define (infinite) sets of reactors that are organized by their inlet
and outlet times:

S’ = the set of all reactors and holding tanks
that operate from timg to timet; (11)

Using these sets as defined, the formulation for the batch reactor
network synthesis problem can be set up as follows:

FIED)

minimize» = f(F£.% FI, FX

ml»

subject to:
(1) Distribution Network Inlet Mass Balance (Splitting)

n n _ n
F*=Z F;ﬁk:zl ZSQF%:Z %Fﬁf
=1 meS* k=1 meSX k=1 mes

(2) OP Outlet Mass Balances (Splitting)

n

5 3o
k=2 |eF

k>j>i

OmeS: 0i=0,..n—2;0=1,..n—1( <])

el

(3) Distribution Network Outlet Mass Balance (Mixing)

n—1 ) n—1 )
F.= Z) Fi = Z F"
= |;" 1= I;”

(4) Distribution Network Outlet Component Balances (Mix-
ing)

o -1 n—1
C.F. = ; ;

(5) OP Inlet Mass Balances (Mixing)

=

Z c"F

lesn

Y CIFi =

lesn

n—2
=ik _ iik
m— Z z le
1I=0 |eS
i<j<k

OmeS0j=1,..,n—1;0k=2,...n(j <K



(6) OP Component Balances (Mixing)
CJkF]k Z CuFuk
1= |EZSJ
i<j<k

Ome S 0j=1,...n—1;0k=2, ..n(j <K

(7) Positivity Constraints

Fil>0, Fl>0, F¥X>0 Omed);0legk

0i=0,..,n—2;0j=1,..,.n—1;
Ok=2,...n(i <j <k
F*%>0, Ff*>0 0i=0,..,n—1;
Ok=1,..,nOmeS* Ol eS"

(8) Constant Density Assumption

F.=F. [Ome §j; 0i=0,..,.n—1,;

0j=1,..,n

Fl=F),

(9) Batch Reactor/Holding Tank Model Map

[CH(D) @) .. CHN) & 4 A=

[Cl1) c@2) .. CAN)]  Om=1,..0;0i=0,..n
if Al =1: Batch ReactoR(CL(i))=0 0i=0,..,N
if ) =0: Holding TankR(Cl(i) = 0i=0o0,..,N

E

from another unit (or from the network inlet). Mixing ratios
satisfy the following equations:

F = Firen (13)
<ak<1 (14)

Ome §k; Ol e §j; 0i=0,..n—2;00=1, ...,
n—1,0k=2,..,n(i <j <K

Similar equations can be written for the OP inlet and network
outlet mixing ratios:

Fr%=F%ax. %  Omes™ k=1,..n (15)
Fi*=Fdl* DOleS"0i=0,..,n—1 (16)
O<aPF <1 OeS"0i=0.,n—-1 (17)

To identify the BAR, we then introduce the following defini-
tions:

Definition 1: Active unit — a unit (reactor or holding tank)
is active if its volume (outlet flow rate) is nonzero (strictly posi-
tive) in the feasible solution to the above optimization problem.

Definition 2: Inactive unit— a unit is inactive if its volume
is zero in the feasible solution to the above optimization
problem.

Without any loss of generality, mixing ratios from inactive
to active units can be set to zero, because flows to or from an
inactive unit are zero. In addition, the sum of all mixing ratios
that correspond to any unit inlet can be set to one. Indeed, for
mixing ratios that correspond to active unit inlets, this must be
the case, whereas for mixing ratios that correspond to inactive
units, this assumption is inconsequential. Furthermore, constraint

The aforementioned optimization problem is an ILP (because set 6 of the aforementioned IDEAS ILP is automatically satisfied

all unit inlet and outlet concentrations are known) as long as
the objective functiorf is a linear function of the network’s
“flow” variables. The most commonly considered linear objec-
tive functions are maximization or minimization of one par-
ticular component’s DN outlet concentration, maximization of
selectivity or yield of a desired product, minimization of total
network volume, etc.

In practice, this ILP is not solved directly; this would be

for an inactive unit, while it suggests that the inlet concentration
vector of an active unit fed at timebelongs to the convex hull

of outlet concentration vectors of active units, which outlet at
time t;.

We also consider that these mixing ratios satisfy the following
five conditions; these equations (eqs—1®) are automatically
satisfied for active units and are irrelevant to the IDEAS ILP
formulation for units with zero flow, based on constraint sets

impossible except for certain specific cases where a solution3, 5 and 6 in the above formulation:

could be found analytically in the limit. Instead, finite linear

programs (or LPs) are solved that give an approximation to the "2

ILP’s solution. As larger and larger LPs are solved, their

solutions more accurately approximate the solution of the ILP. i'<j<k

If we represent the number of units considered in our LP
approximation a&) and the associated objective function value
for the LP asvy, then the infinite sequence

{VU}szl (12)

has been proven to be a non-increasing sequence of upper

bounds on the actual ILP objective function valu, (or just
v) and the sequence is guaranteed to converge (fwoof of
this is given in work by Justaniedh,in collaboration with
Manousiouthakis).

Definition of Mixing Ratios

Now that we have defined our problem above, we will
introduce the concept of a mixing ratid','fl. A mixing ratio is
a ratio between 0 and 1 (inclusive) that defines the fraction of
a particular unit’s inlet stream (or the network outlet) coming

leS

1

OmeS0j=1,..n—1;0k=2,...,n(j <k (18)
n—1
> 3 a= (19
1=0 |esn
n—2 .
Z z Clah — Ch=0
1=0 |e9)
i<j<k .
OmeS0j=1,..,n—1;0k=2,...n(j <K (20)
ar%*=1 OmesS® k=1,..n (21)
C*=c. OmeS®k=1,..n (22)

We can substitute in these mixing ratios (eqs-13 above)
into the feasible set of the IDEAS ILP to transform it to an
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equivalent set. We also make use of the constant density [ o 4™ .. 4" o .. 0 ..0 .. 0 ..00 0 ]
assumption to eliminate some of the redundant flow variables 0 0 ..o0 A" A4 0. 0 .00 0
and positivity constraints, reforming the set as follows: : I :
A° 0o .. 0 0 0 ..0 .. 0 ..00 0
n n 0 0o .. 0 o .. 0 .. 0 .. 0 .. 00 0
1. F, = FOkgx Ok — Ok S S S T T A A T A
b " e " P O
A= H H : H H H H H H H H H H H H
n 0 0 .. 0 0 .. 0 ..0 .. A4 00 0
2Fii=ZZ|:{kiJk : O R T T T A A :
. m m .
© 15 PO A L N
k>J>| : B : : : : B N : . B
ij. i = — 9 = — 16 <i 0 0 .. 0 0 .. 0 ..0 .. 0 ..0¢0 A"
Ome S 0i=0,..,.n—2;0j=1,..n—1( <j)
A9 . 0 0 .. 0 ..0.. 0 ..00 0
n-1 . (47" o0 .. 0 0 .. 0 ..0 .. 0 ..00 0
j— n.
3. 1= z aq* Figure 3. Matrix A from eq 24.
1=0 |egn
The previously mentioned constraint sets 1 and 2 then lead to
_ n1 - the matrix equation: wher is a matrix of mixing ratios (shown
4. C=Y Y cra
| Q|
1=0 | AF =F (24)
n—2 i in Figure 3) andr is given as:
5 1= Z) z ak
1= | S‘j =
i<j<k F

: * 01 On 12 In i(i+1 n—2)n n—1)n|T
Ome S Oj=1,..n—1;0k=2,..n( <Kk e e A
B O S
) n—2 o 2
6. Ck= Z) > Clay, (29)
=0 (e The sub-matriceaik in A contain some combination of mixing
i<k o . ratios and zeros. The matricAg%, A*02 _ A*0ncontain only
Ome S5 0j=1,..,n—1,0k=2,...,n(j <K) ones (see eq 21).
7 Flso o0<af<1 Equation 24 AF = F) must be satisfied for any feasible
- Pm= 0 U=ap = solution to the new finite problem, under the condition tblat
Ome §i; Ol e§k; 0i=0,..n—2;0/=1, ..., is large enough that at least one feasible solution exists.
n—1;0k=2,..n(i <j<Kk Assuming that the units in each set Gn be rearranged in the
in proper manner, the column sums of this matrix must satisfy
O=<aj=1 egs 18, 19, and 21 for the mixing ratios to be feasible for the
0i=0,..n—1:0k=1,..nOmeS* 0O es" problem. Because these mixing ratios are between 0 and 1
inclusive, the matrixA is a non-negative square matrix with
We have omitted the batch reactor model equations, because icolumn sum of 1. Bapat and Ragha¥ahave shown that this
is assumed that the infinite sequence of reactor inlet concentra-result proves that the spectral radiusAofs also 1, using the
tions and their respective lambda parameters are known forPerron-Frobenius Theorem (Lemma 3.1.1). This implies that
a given reactor’s inlet and outlet time, and thus all outlet there exists an eigenvector of the matixhat is>0 and with
concentrations are also known for each unit using the iput a corresponding eigenvalue of 1 (see theorem 1.7.3 in the work
output map M. Also, this formulation assumes the positivity of of Bapat and Raghavaf). Therefore, if a matriXA of mixing
the network inlet flow, because the problem would be trivial ratios can be found that is feasible for the original optimization
otherwise. All the constraints in the aforementioned set are problem, one caalwaysfind a vectorF of feasible flows such
linear, except for constraint set 2 (which corresponds to the OPthat AF = F and F = 0. Using this result, the necessary

outlet splitting mass balances). conditions for a point to be in the feasible set of the transformed
problem can be modified, with constraint sets 1, 2, and part of
Finite Approximation to Feasible Set set 7 eliminated, leaving
To approximately identify the solution to the aforementioned et

infinite problem, we discretize the concentration space witha 3 1= air?*
finite number of grid points. We then consider all units with an ,; S
inlet composition vector at one of the grid points, some at

starting timet;, and some at ending tinte Let U be the finite _ n-1 _—
number of units that operate from each starting tinte each 4. C. = Z Cra*
ending timet;; we will define new finite sets Gwith car- 1=0 lesn

dinality U, which approximate the infinite setd.SThe vector
of all flows through each of these units in sét &n be defined

n—2
as follows: 5 1= Z z 825
Fij :[FI:{ Fg Fg eoe FB]T i'<JT<k|€SJ ) |
0i=0,.,n—1;0§=1,..,n(i <j) (23) OmeS50j=1,...,n—1,0k=2,..,n( <K



G

_. n—2 o eliminates points in concentration space (identifying them as
6. CJn'ﬁ = Z) Z CI’a,'l,'f, “unattainable”) by explicitly calculating from where each point
i=0 |eSi must have come. An explicit description of this algorithm is

i<j<k

o ) given as follows:
Ome S5 0j=1,..,n—1,0k=2,...,n(j <K)

(1) Identify a suitable superset in concentration space for the

7 0<ak<1 system in question, based on knowledge of its physical
- U= 8m - ) constraints.
OmeS;0lesS0i=0,.,n-2,0j=1,..,n— (2) Discretize the superset in all directions; the level of
L,0k=2,..n({ <j <K accuracy of the method is improved as this discretization
0< aiﬂ* 1 becomes finer.

) (3) Start from an extreme point of the current set and travel

0i=0,..n—1;0k=1,..,nOmeS* 0l es" backward along the path of the batch reactor in concentration
space front; to to. If this new point is in the current set, keep
Constraint 4 can be thought of as a specification on the outlet it. If it is not, remove it from the set.

concentration for the feasible solution. The set of mixing ratios  (4) Repeat step 3 until no more extreme points can be

that satisfy the aforementioned constraints defines the AR for removed; this region is guaranteed to contain the true BAR for

the batch reactor network for a givanthis feasible setis similar  all network operating times and for a given reaction/holding

to that obtained in Manousiouthakis etdbr steady-state RNS.  time, t; — to.

Because of the fact that there is only one network inlet, there

can only be one possible inlet concentration set for each reactor/g o 54th-First BAR Construction Algorithm

holding tank that is fed at tim& (the feed concentration).

Similarly, all reactors fed at timé& can only be fed by the The aforementioned Shrink-Wrap-like algorithm is only

effluent of the reactor with inlet timé& and outlet timet; or guaranteed to converge to a superset of the BAR. An alternative

the holding tank with inlet timéy and outlet time;. Reactors algorithm that is guaranteed to converge to BARr any given

that feed at time, can be fed by some linear combination of n) is given next. BAR is “grown” from timeto out to timety,

the effluents of reactors/holding tanks that outlet,aand so to respect the time hierarchy of the unit operations in a forward

on. Generally, to ensure causality, a reactor or holding tank thatdynamic programming-like mannérThe algorithm is an

feeds att; can be fed only by the linear combination (mixing) instance of a breadth-first search (see the work of Cormen et

of effluents of reactors that outlet &t The fact that the lower  al.”8) with the network feed as the first point in concentration

triangle (excluding the first column) of matri& (Figure 3) is space in the candidate BAR. At each stage of generation, the

zero is a manifestation of the network’s causality, namely that points or nodes form a directed acyclic graph (DAG). Because

unit feeds at time; can only be comprised of unit effluents at  of this, it is easy to construct an actual network of operations

time t;. from the nodes of the graph. Each node of the DAG, other than
the first, can either have a single parent or multiple parents,
Shrink-Wrap BAR Construction Algorithm because of mixing. If the node is generated by a batch reactor

simulation, it has only one parent and that batch reactor
operation will be added to the resulting network of reactors to
create that node. If the node is generated by a linear combina-

applied to the construction of a superset of the méle BAF:]: tion of other nodes (mixing), it will have two or more parents.
Because of the causal nature of the_batch RNS problem, this o 655t one of the parent nodes is a newly generated vertex
method can only be guaranteed to find a superset to the true

- from the previous time step, because we have assumed that
BAR. One of thg steady-state RNS problem charactgnsﬂcs thatmixing is instantaneous. An outline of the algorithm is given
leads to the Shrink-Wrap steady-state AR construction method as follows:
is that any unit's feed can be constructed, through mixing, as a (1) Start from the feed pointthis is the BAR at timeto or
linear combination of the feed and reactor unit exits that belong BAR
to the candidate steady-state AR. This was due to the fact that o . .
all points in the candidate AR could be constructed indepen- (2) Travel along thg pa}th of the ba'tch reactor in concentration
dently of each other (through mixing) without consideration of space fromo to t,. This will be the exit concentration vector of
“when” each point was generated. Because unit outlets in thethe f'rSt_ batch reactor. . )
batch reactor network case cannot be used arbitrarily to  (3) Find the convex hull of all the points from the previous

reconstruct other unit inlets (because of causality), the avail- ime step and the points from the new time step to find the
ability of any arbitrary unit exit in the candidate BAR to mix BAR at th_at _partlcular time. For the first time step, this will be
and convexify the candidate BAR cannot be guaranteed unless2 lIn€- This is BAR. . _

one knows when that unit operates. However, a Shrink-Wrap- (4) Discretize this line and travel from tintgto timet, along
like algorithm can be used to identify increasingly accurate t_he reactor trajectories starting at all discretized points on the
approximations of a convex set that is guaranteed to contain!ineé BARy that are not part of BAR

the BAR for all network operating times, although it is not (5) Form the convex hull of this new set and BARhis is
guaranteed to necessarily converge to the true BAR. This an approximation of BAR

algorithm removes extreme points (vertices) from an initial ~ (6) For every BAR (&) generate the reactor trajectories from
superset by following the batch reactor trajectory backward (for time t; to time ti11 for all points of BAR on an appropriately

a given timet; — to) and evaluating from where it started. If defined grid that are not contained in BAR and (b) form the
the starting point of the vertex’s trajectory is not a point in the convex hull of this new set of points with the approximation of
interior of the superset, then no batch reactor can exist that BAR; (this is an approximation of BAR;).

creates that point and the vertex is removed. The algorithm then (7) Repeat step 6 until timg; this final convex hull is an
updates the set as points are removed. The method essentiallgpproximation of BAR, the true BAR at.

An algorithm that is computationally similar to the “Shrink-
Wrap” algorithm (outlined in Manousiouthakis et®jlcan be
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Table 2. List of Points Used in Forming BAR,, BAR1, BAR;, BAR3, g§05
and BAR = —— 10000 x 10000 grid size
o T | 1000 x 1000 grid size
point  first generated in  C(A) C(C) formed by 204 — — 100 x 100 grid size
A BAR, 0.2486  0.3204  mixing g
B BAR; 0.1667 0.3493  map of point C o“o 3
C BAR; 0.375 0.2466  map of point F e
D BAR;3 0.0625  0.3931  map of point B ]
E BAR; 0.2158  0.3495  mixing 92
F BARy 1.0 0.0 network feed point e
G BAR; 0.1064  0.3882  map of point A S
H BAR 0.0 0.1851  see Appendix C .E 01
W BAR 0.05752  0.4568 map of point Z 8
Y BAR 0.0 0.4666  see Appendix D 5 0
z BAR 0.1579  0.4156  see Appendix D c % 02 04 06 08 1
Concentration of Species A, moles per liter
Case Study for Trambouze Kinetics Figure 4. Shrink-Wrap-like algorithm superset fof — tout = 2 min and
We will apply the two aforementioned algorithms to the V2©nd 9rid size.
construction of the BAR for a case study that exhibits Tram- 505
bouzé&? reaction kinetics (example 4 from his 1959 work), which p o ggg": trajetctow
is a reaction scheme that is often studied in the literatg#&® w04l T CSTR e PER AR
— \'"
ky R g PRI N
A — B (zeroth orderk, = 0.025 mol L = min ~) (26) Yosl / \\
[ B N
@ H o
k2 . P g { \
A — C (first orderk, = 0.2 min °) (27) & o2 RN
K] N
s 1, —1 5 N
A — D (second ordek; = 0.4 L mol"™ min™") (28) T o N
s S
These are the same reaction kinetics and parameters as those g IS
given in the work of Manousiouthakis et ‘alThe rates of ° 9 0.2 04 086 0.8 1

generation for each species for this reaction pathway are Concentration of Species A, moles per liter
Figure 5. Attainable region (AR) for steady-state networks.

Ry = —k; = kCp — keCy (29)
Ry =k (30) described by Appendices C and D. A table of points that define
1 these regions is given as Table 2. Table 3 lists the points and
Re = k,Cp (31) curves that define BAR BAR;, BAR,, BAR3, and BAR, for
easy reference.
Ry = k3CA2 (32)

) ) Shrink-Wrap BAR Construction Algorithm Results for
The batch reactor equations can be solved analytically, asihe Trambouze Example

described in Appendix A. This makes this example ideal for

testing our candidate BARdentification algorithms, because Figure 4 shows increasingly accurate approximations of a

they can be compared analytically to the true BA®R each superset to the BAR for species A-&xis) and species G/{

time. For the purpose of creating BA&Rfor this example, we  axis), ranging from a 10& 100 grid size to a 10 00@ 10 000

consider that the batch reactor time is 2 min, i.e., thatt, — grid size. The identified BAR superset is only slightly smaller

thr1=th-1—th2=..=1t1 — tp =2 min. than the steady-state AR found in the work of Manousiouthakis
For this batch reactor time, BARBAR;, BAR;, and BAR; et all (shown in Figure 5) at the high end of theaxis

are created analytically for this example as described by intersection of the AR (0.4666 for BAR, versus 0.4705 for

Appendix B and BAR (BAR as n — ) is identified as steady-state AR), but significantly smaller at the lower end of

Table 3. List of Points and Relevant Equations for Curves That Define BAR, BAR;1, BAR,, BAR3, and BAR

region defined by relevant equations

BARo point F F=(1.0,0.0)

BAR: points C to F (linefy) f1(C1(A)) = C1(C) = 0.8(0.2— In 2)(C1(A) — 1)

BAR> points Ato B @1), B to C (line), C,(A)) =C,(C)=(0.2—In Z)SCZ(A) _ 3+ In 5 —01
Cto F (line), and F to A (line) G(CA) = G0 = 0. 4 — 4CHA) 4—4CA))

BAR3 points E to G ), G to D (hy),

Dto C (line), C to F (line), hy(C4(A)) = C4(C) = 0.426<1ZL223(A)) T In( /+) —01
F to E (line) 16— 16C4(A) 4 — 4C4(A)
B A -2 = )
h(CA) = C4C) = (02~ In 2= s in| | fo—e 5] = 02
3 3

BAR points Zto W {1), Wto Y (j2), ) 40C(A) — 15\ C,(C) 5
Y to H (line), H to F (line), j2(C(A)) =C(C) = ( — —+05 In( — ) -01
FtoZ (line) ! 16— 16C(A)/C,(A) — 1 4— 4C(A)

_ . (30c(A) —5\ C,C) r( 5 ) _
IAC(A) = c(C) = (6 —tecm)cm -1 2 Mz —scm) 2



the y-axis intersection of the AR (0.1851 for BAR, versus 0.0
for steady-state AR). Fundamentally, the reason for this dis-
crepancy is the causality restriction that has been imposed on
the batch network; the point (0.0, 0.0) cannot be part of the
BAR because no batch reactor trajectory with a feed in BAR
can have this point as an exit. Similarly, the point (0.0, 0.1)
cannot be part of BAR for the same reason. Repeated application
of this argument within the aforementioned Shrink-Wrap-like
algorithm leads to the lower boundary of the BAR superset being
the line that goes through the network feed point (1.0, 0.0), a
batch reactor exit that lies on tlyeaxis, and its corresponding
feed. Solving the batch reactor equations in Appendix A for a
reaction time of 2 min and an outlet concentration of A of 0.0
mol/L gives an inlet concentration of A of 0.0625 s mol/

L. Also using Appendix A, a batch reactor that feeds at (0.0625,
C(C)) will exit at (0, C(C) + 0.01157). The value o€(C)

for which the network feed point, aforementioned reactor inlet,

—— 1000 x 1000 grid size
------- 100 x 100 grid size
04 — — 10 x 10 grid size

03

o
()

(=]
-

Concentration of Species C, moles per liter

o
o

02 04 06 08 1
Concentration of Species A, moles per liter

Figure 6. Breadth-first algorithm results for BARwith tin — tout= 2 min
and varying grid size.

. SR @ 03935 —— 1000 x 1000 grid size
and reactor outlet points are all on the same line is: = 100 x 100 grid size
- - b — — 10 x 10 grid size
C(C) _C(C)+0.01157 o 0383} d
0.0625— 1 -1 3
C(C) = 15(0.01157F 0.1736 E 2095
S
Thus, the batch reactor exit is: @
2 0382
C(C)=0.01157=16(0.01157)} 0.1851 &
‘e
This is consistent with the Shrink-Wrap-like BAR code, g 0.3915¢
which identifies the lowest concentration attainable onG(E) =
axis as point H (0.0, 0.1851). £ 03w
The BAR superset identified in Figure 4 is, in fact, the BAR 3
itself. As discussed in detail in Appendix C, if the point of BAR § 0 2005 . . . . . . ‘
with the lowest value o€(A) is considered to be a batch reactor “"00s 0085 007 0075 008 0085 009 0085 01
feed point, then this batch reactor’s exit is on ykaxis. Mixing Concentration of Species A, moles per liter
this exit with the network feed results in a point wil{A) = Figure 7. Enlargement of Figure 6.

0.0625 that is below the point in BARvith the same value of
C(A). Repeated application of this batch reaction/mixing process isothermal kinetic model. We have shown that a batch reactor
is shown in Appendix C to reach the lower boundary of the model can be incorporated into the IDEAS framework, which
previously identified BAR superset. A similar procedure is is proven to identify the globally optimal network of batch
outlined in Appendix D for the upper boundary of the superset, reactors.
thus establishing that the superset given in Figure 4 is the actual We have demonstrated that a Shrink-Wrap-like algorithm can
BAR. be used to identify increasingly accurate approximations of a
These results suggest that if species C were an unwantedsuperset of the batch attainable region (BAR). We have also
byproduct of this reaction set, choosing any network of batch outlined a novel breadth-first algorithm that can be used to
reactors with a reaction/holding time of 2.0 min would give identify the batch reactor network BARNe have applied both
unacceptable results; a network of steady-state reactors (e.g., algorithms to a case study with Trambouze kinetics, and we
CSTR) could yield practically no generation of C and, thus, have demonstrated that the breadth-first algorithm accurately
would be superior to a network of batch reactors (except when identifies BAR, (for n = 3), whereas the Shrink-Wrap-like

the reaction/holding time becomes very, very small.) algorithm accurately identifies not only a superset of BAR but
the actual BAR itself. Iterative procedures that demonstrate how

Breadth-First BAR Construction Algorithm Results for the BAR boundary, as identified by the Shrink-Wrap-like

the Trambouze Example algorithm, can be reached with causal (forward moving in time)

. . . . batch reaction and mixing operations are discussed in detalil.
A “breadth-first” algorithm can be used to identify the BAR ! Xing operat ISeu ! '

for any givenn; we show the case fan = 3 as depicted in o .

Figure 6 and an enlargement of the top of the same region aSAppendlx A: Solgtlon of Batch Reactor Model for
. . . - Trambouze Kinetics

Figure 7 to illustrate the convergence of the algorithm with an

increasing number of grid points. The considered Trambouze kinetidg & 0.025,k, = 0.2,
This result matches very well with the analytical calculation k; = 0.4) satisfy the relationki? — 4k;ks)2 = 0. Therefore,

of BARj3 that is given in Appendix B. any batch reactor trajectory satisfies the following relations:

Conclusions (2 — k,7)C(A) — ak,T

We have outlined a method for automatically identifying the CA) 2k,7C(A) + 2 + kot

attainable region for batch reactor networks for a given overall _ _
network time, for any number of components, and for any C(C)=C(C) + af2 In(1 + akgT + K;zC(A)) — k7]
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wherer is the reaction time of unity is defined as: Zo03sf —
™ A ine AF
2 / A A R Curve AB
k2 1 @ 03 8 N I t!ne (B:g
o=——== ° ) — — Line
2k, 4 go 25 PN
» C
C(A) and C(A) respectively represent the inlet and outlet § 02
concentrations of species A, a@{C) andC(C) respectively §o.15
represent the inlet and outlet concentrations of species C. it
Fort = 2.0: g 0.1
B
C(A) — 0.0625 1+ 24C(A) g0
CA =—2—"—"—"=CA) =——_—"= 8 . . . .
) C(A) + 15 B =16 16C(A) © %92 04 o8 os 1
Concentration of Species A, moles per liter
and: Figure B1. BAR; generated analytically.
C(C)= 0.5 In(0.&(A) + 1.2)— 0.1 where:
Appendix B: Analytical Generation of BAR,, BARj, gl(g’) = In(v/2) — 0.1= 0.2466
BAR,, and BAR; 8
BARg consists solely of the feed point: BAR= {(1.0,0 1
AN point: BAR= {(1.0.0} a5 =n(v3) - 0.2=0.3493

BAR; is the convex hull (which, in this case, is a line)
between two points: the feed and the exit of a batch reactor Thus:
with 7 = 2.0 and with the feed point as its inlet. Based on the

formulas given previously, the latter point 8A), Co(C)) = C,(C) € [0.2466, 0.3493]
(0.375, In(\/§) — 0.1). We will call this point C. BAR can be
defined as We must determine if there is a point in the domaimpivhose

tangent intersects the feed point:
BAR,; = {(C4(A), C,(C))

9:1(C(A)) — 0 dg,(C,(A)) —n 5 _
where: C(A)—1  dC4A) (4 — 4C2(A)) B
B 1-(In2) - 41 2)C,(A) B
C(C)=1(Cy(A) A -1 C,(A) = 0.2486

C,(A) €[0.375, 1.0}

0,(0.2486)= (1.6(0.2486)—% 5(In 2) — 2.6) B

and: 4 — 4(0.2486)
0.1=0.3204
f,(C,(A)) =0.8(0.2— In 2)(C,(A) — 1)
This result shows that such a point exists; we will call this point
BAR; is the convex hull of all batch reactor trajectories (0-2486, 0.3204) point A. The functiogy is concave on the

starting from points in BARand BAR. It can be defined as ~ domain; therefore, BARis the area formed by the line from

follows: the feed. point to po.int A, the part of the batch reactpr trajectory
from point A to point B {/5, 0.5(In 3) — 0.2), the line from
C,(A) — 0.0625 point B to point C (3 0.5(In_ 2)— 0.1), and the line from point
CA) =————F—=1,(C,(A) = C to the feed point (see Figure B1).
C,(A) +15 BAR; for this problem is comprised of all points attainable

C,(A) €[0.1667, 0.375] from batch reactor trajectories that start on the boundary of
BAR,. We only need to consider extreme points, because the

C,(C)=C,(C)+0.5In(0.&,(A) +1.2)— 0.1= Trambouze reaction vector is dependent only on the concentra-
0.8(0.2— In 2)(C,(A) — 1) + 0.5 In(0.8&,(A) + 1.2) — tion of species A; any reactor inlet point on a given vertical
_ line that satisfies the relation:
0.1=f,(Cy(A))

Al = Au
The convexification of this region will be a line from one CC) =) =C(C)

endpoint of the BARline to either another endpoint of the new ), be mapped to a pointQ(A), C(C)) that lies between the
set, or a point mtermedlate_on th_at new set, dependmg ON hoints C(A), CI(C)) and C(A), CY(C)). Therefore one must
whether the new set has an inflection point in the domain: 1y consider the reactor trajectory that extends the region the
furthest for each point on tHe(A) axis. Three separate segments
C,(C)=(0.2—In 2)(8C2(A) — 3) need to be mapped (i.e., travel along the batch reactor trajectories
2 ' 4 — 4C,(A) for 2 min) to create BAR line AF, curve AB, and line BC.
Line CF does not need to be mapped again, because its map
051 L) —0.1=g,(C,(A)) was calculated previously and has already been considered in
4 —4CyA) BAR,. The convex hull of the region that is defined by these
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Figure B2. New mappings needed to make BAR

three mappings and BARWwill give BAR3. Mapping line AF
gives:

B 15— 40C,(A) | 5

0.1=h,(C4A)),  C4(A) [0.1064, 0.375]

noj—3
3 - 8C4(A)

C4(A) € [0.0625, 0.1064]

Mapping curve AB gives

(12C4(A) — 2)(0.2—In 2)
3 —8C,4(A)

0.2= h,(C4(A)),

Cy(C)=

Mapping line BC gives

1+ 24C4(A)
16 — 16C4(A)

C(C)= 2.4(In(§) +0.2
5
0.51 m) + 0.9(In 3)— 0.4(In 2)—

0.38= hy(C4(A)),  C4(A) € [0.0625, 0.1667]

A plot of these three mappings is given as Figure B2.

To form BARs, we must make the convex hull of these new

points with the points of BAR We first determine ih; has a
tangent that intersects the feed point:
hy(C4(A) — 0 _ dhy(C4(A))
CyA) -1 dCy(A)
C,4(A) = 0.2158€ [0.1064, 0.375F

—0.4264(%5 - 5C3(A)) +0.8C4(A) + 0.5325=

5
(- CIn(; e )

We see thah; does, in fact, intersect the feed point and is
concave, so there will be a convexification line from the feed

point to point E (0.2158, 0.3495). Becausgis also concave
and its derivative is equal to the derivativetafat their inter-

section, there will be no further convexifications at the top of

the region. The functiohs is concave and the value @k(C)
for hs at point B is greater than that of line CD at t8g(A) of

point B; therefore, there is a convexification line from point C

to point D (0.0625, 0.393147) to finish BARThis completes
the analytical generation of BARIt is the region formed by
the line from the feed to point E o, the functionh; from
point E to point G (0.1064, 0.3882), the functibnfrom point

K

G to point D, the line from point D to point C, and line CF
(previously defined). The final graph of BARppears almost
identical to the result from the breadth-first algorithm (Figure
6) and will not be reproduced.

Appendix C: Analytical Generation of the Bottom of
BAR

The point in BAR; with the lowest value o€(A) is (0.0625,
0.3931). This point maps to the point (0, 0.4047). The equation
for the line from this point to the feed point &C) = 0.4047-

(1 — C(A)). The point on this new line aE(A) = 0.0625 is
C(C) = 0.3794. Mapping this new point back to the axis gives
the point (0, 0.3910). This procedure can be repeated iteratively
as follows; defineC;i(C) as theith C(C) value in the sequence
andAC(C) as the increase gained by mapping, wHeg€) =
0.3931 andAC(C) = 0.01157. The first three points in the
sequence are then:

€0 = (felcw(C) + AC(O)]
C,(C) = (i—g)zco(q + [(% + 1](%3 AC(C)

CC) = (1—2)300(0) + [G—G g (1_9 + 1] (i—Z)AC(C)

and C(C), in the limit asn — o, can be expressed as:

lim C.(C)= Cy(C) li (E)n—i-(E)ACCI' n(E)i—
im n(C) = O()nmle e ()nﬂl,z o =

15AC(C) = 0.1736

This point maps forward along a reactor trajectory for 2.0 min
to point H (0, 0.1851), which is also the lowest point on the
C(C) axis obtained through the Shrink-Wrap-like algorithm.

Appendix D: Analytical Generation of the Top of BAR

As shown in the construction of BARand BAR;, at high
values ofC(A) (C(A) > 0.375), the upper BARboundary is a
straight line that is tangent to the curve generated when each
point of the upper BAR-1 boundary (which, again, is a straight
line for large values ofZ(A)) is considered a feed to a batch
reactor with a reaction time af = 2.0 min. BAR has, as its
upper boundary, the line AF, which is tangent to the curve CAB
(at point A), which is generated when the points of the upper
boundary of BAR (line CF) are considered as feeds to batch
reactors witht = 2.0. Similarly, BAR has, as its upper
boundary, the line EF, which is tangent (at point E) to the curve
h1(Cs(A)). This curve consists of points that are outlets of batch
reactors that have, as feeds, the points on the upper boundary
of BAR; (line AF). This process will stop expanding BAR
upward (as — =) only when the line ZF (that is, the upper
boundary of BAR) is tangent at point Z to the curve that results
from mapping the line ZF through the batch reactor map with
T = 2.0. To identify this point Z (Z= (Cz(A), Cz(C)), the
following conditions must hold:

(1) All points on the line ZF satisfy:

C(c) _G(©
CA -1 CA -1

(2) The line ZF maps to the following curve:



40C(A) — 15 C(C) tos r( 5 ) B
16— 16C(A)/C,(A) —1  ~ "\4— 4C(A)
0.1=j,(C(A)

)=

(3) At C(A) = Cz(A), C(C) = Cz(C) and d(C)/dC(A) is
given as:

dc(C)  CAC)
dC(A) C,(A) —1

where:

_ 81— C4A)?
=5 16(1— C,(A))°

Taking the derivative of the functiga from condition 2 above
and evaluating the derivative @%(A) yields:

di,(C(A) _
dC(A) lcm=c,a)
0.5C,(A))2 — C(A) — (i—g)cz(c:) +05

(1 - C/A))°

This point must be on the map of line ZF (condition 2), giving
the coordinates of point ZOz(A),Cz(C)) = (0.1579, 0.4156).

© 05
% . + pointZ
g B\ —— line ZF
?04 \ — curve ZW
% N O pointW
S ~ | curve WY
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Figure D1. Point Z, line ZF, curve ZW, point W, curve WY, and point Y
(complete top of BAR).

from point W to point Y. This turns out to be approximated
extremely well by the Shrink-Wrap-like algorithm, which, in
this case, has successfully identified the BAR itself.
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