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In this work, we describe a method for automatically identifying the set of all points in concentration space
that represent outlet compositions of some network of discretely fed batch reactors for a given reaction set
with known kinetics. This so-called batch attainable region (BAR) is dependent on the batch network’s feed
and total operating time, and it is shown to be quantifiable using the Infinite DimEnsionAl State-space (IDEAS)
framework. We first establish that a simple batch reactor model possesses the properties that allow application
of the IDEAS framework. We then formulate the resulting IDEAS Infinite Linear Program (ILP) whose
solution is guaranteed to identify the globally optimal network of batch reactors. We subsequently use a
simple transformation of this IDEAS ILP that leads us to propose two algorithms that are related to the
construction of the true BAR. The first is a “Shrink-Wrap”-like algorithm that is similar to that previously
reported [Manousiouthakis et al. The Shrink-Wrap Algorithm for the Construction of the Attainable Region:
Application of the IDEAS Framework.Comput. Chem. Eng.2004, 28, 1563] and creates increasingly accurate
approximations of a set guaranteed to contain the true BAR for all network operating times. The second is
a breadth-first algorithm that creates increasingly accurate inner approximations to the BAR for a given network
operating time. These two algorithms are applied to an example from the literature and are shown analytically
to converge in the limit to the true BAR.

Introduction

Evaluation of limits on the performance of reactors and
reactor networks is crucial to the economic success of any
chemical process network. Consequently, the analysis and design
of reactors and reactor networks have been the primary foci of
process systems engineering research. Previous works on non-
steady-state reactor networks have addressed techniques for
analyzing, modeling, or optimizing single-batch units, but they
make little mention of how units can be used in conjunction or
what theoretical limits exist on the performance of these types
of non-steady-state systems. Because non-steady-state networks
are fundamentally different from their steady-state counterparts,
identification of these performance limits requires careful
consideration of the effect of time (both reaction and holding
time) and causal relationships between reactors.

The goal of this work is to apply the Infinite DimEnsionAl
State-space (IDEAS) framework to construction of the batch
attainable region (BAR) for non-steady-state networks of batch
reactors; this is the first application of IDEAS to a network of
dynamic process units. The remainder of the work is structured
as follows: first, we give background information on reactor
network synthesis (RNS), the IDEAS conceptual framework,
and attainable region (AR) construction. Next, the applicability
of IDEAS to batch RNS is established and the relevant IDEAS
infinite linear program (ILP) is formulated. We then outline a
variable transformation which leads to two algorithms that are
related to the construction of the true BAR: the first is similar
to the “Shrink-Wrap” algorithm that was developed by Man-
ousiouthakis et al.1 for the construction of the steady-state AR
and creates increasingly accurate approximations of a set
guaranteed to contain the true BAR for all network operating
times. The second is a breadth-first algorithm that creates
increasingly accurate inner approximations to the BAR for a
given network operating time. These two algorithms are applied

to an example from the literature and are shown to converge in
the limit to the true BAR.

Background

Automatic (computer-based) reactor network synthesis (RNS)
evolved as a field of its own starting in the 1980s. Chitra and
Govind2 performed work in 1981 on the identification of optimal
reactor types and configurations using a super-structure-based
approach. They later expanded on their earlier work, applying
a superstructure-based method for optimal RNS for both
isothermal3 and non-isothermal4 reaction systems. Ong5 con-
sidered the optimization of continuously stirred tank reactors
(CSTRs) in series using Bellman’s6 dynamic programming.
Pibouleau et al.7 proposed a mixed-integer nonlinear program-
ming (MINLP) formulation for the automatic synthesis of
networks featuring CSTRs and single-stage separation units. In
1994, Omtveit et al. presented a RNS method that also included
a separation network as a separate sub-problem;8 that paper also
gives an extensive literature review of work on RNS to that
point. Smith and Pantelides9 gave another reactor-separator
network superstructure-based formulation in their 1995 work.
Bikic and Glavic produced a series of papers on a superstructure-
based nonlinear programming (NLP) method for RNS for
networks with multiple multicomponent feeds,10 non-isothermal
complex reaction schemes,11 and reactor/separator networks.12

Their 1996 work stated that “the proposed design procedure
can also be used to support the design of batch processes”, but
that work did not specifically address the claim. Esparta et al.13

proposed a superstructure-based method for RNS using iso-
thermal two-phase CSTRs in 1998. Hua et al. proposed a NLP
model for RNS that included “differential recycling DSR”
reactor units.14 Mehta and Kokossis15 proposed a stochastic
optimization approach to non-isothermal and multiphase RNS.
Pahor et al. proposed a superstructure/MINLP approach for
optimization16 and then, in later work, applied the method to
the non-isothermal production of allyl chloride.17 Moreover, in
1999, Grossman et al. gave a review of advances in mathemati-
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cal programming for process systems synthesis;18 this review
has sections devoted to both RNS and AR construction theory,
respectively.

The RNS problem was also approached using the methods
of optimal control; the work by Aris19 was significant in this
field, addressing the problem of optimal control of a batch
reactor. In 1970, Paynter and Haskins20 formulated an optimal
control problem for determining the optimal reactor type for a
single reactor using an axial dispersion model. Waghmare and
Lim applied optimal control theory to single isothermal reactor
systems21 and later applied the same techniques to complex
reaction schemes.22 Achenie and Biegler23-25 proposed an NLP
method for RNS that used superstructures in a “target-based”
approach. Godorr et al.26 outlined optimal control policies for
reactor structures on the AR boundary, using temperature as
the control variable. Hillestad formulated the RNS problem as
an optimal control problem and then examined its solution for
the isothermal27 and non-isothermal28 cases.

The IDEAS conceptual framework was proposed by Man-
ousiouthakis et al.1 in an effort to overcome two limitations of
superstructure-based optimal process network synthesis meth-
ods: (i) the considered superstructure may impose unforeseen
limitations on the eventually obtained optimal network, and (ii)
the nonconvex nature of the resulting superstructure-based
optimization formulations (NLP, MINLP, etc.) only guar-
antees local optimality of the obtained optimal network.
IDEAS overcomes these limitations by considering all possible
process network configurations and establishing that most
commonly applied process models can be used to yield
optimization formulations with an infinite number of variables
and an infinite number of linear constraints. The ability of
IDEAS to address several long-standing process network
synthesis problems has been demonstrated on the minimum
utility cost (MUC) problem for mass exchange networks29

(MENs), the minimum plate area30 and MUC31 problems for
heat-integrated complex distillation networks, the minimum total
annualized cost (MTAC) problem for separation networks32 and
power cycle networks,33 the MUC problem for heat and power
integrated complex distillation networks,34 and the minimum
total liquid hold-up problem for complex reactive distillation
networks.35

The attainable region (AR) for a given set of reactions and
reactor technologies is defined as the set of all points in
concentration space that are attainable through reaction and
mixing from a given feed point; this definition has been widely
credited to Horn in 1964.36 Quantification of the AR for reactor
networks is an important problem in chemical process optimiza-
tion, because knowledge of the AR quantifies, for process
designers, the fundamental limitations on the performance of
chemical process flowsheets. Identification of the particular
reactorsor, more generally, the reactor networkswhose output
concentration vector is an extreme point of the AR is often the
objective of reactor engineering studies. Work by Gavalas37 in
1968 on nonlinear differential equations for chemical reactors
introduced the concept of the invariant manifold and gives
example two-dimensional (2D) plots of the conversion of
different species. Many of the proposed AR construction
methods in the literature are based on a geometric approach to
AR identification that was outlined in the 1987 work by Glasser
et al.38 This geometric approach has spawned numerous other
works whose objective was to identify the AR for adiabatic,
variable density reactor networks,39 segregated and maxi-

mum mixed reactor networks,40 exothermic reversible reaction
kinetics,41 and reaction systems with external heating and
cooling.42

In 1997, Feinberg and Hildebrandt43 reported on the deter-
mination of the optimal reactor network configuration using
the geometric properties of the AR extreme points in the first
part of a three-part series. This work was later expanded by
Feinberg in 1999 to a more extensive set of mathematical
properties of the AR boundary44 and in 2000 to properties of
critical DSRs45 and CSTRs46 whose outlets are on the AR
boundary. In 1999, McGregor et al.47 examined the relationship
between the geometric AR identification method and Pontrya-
gin’s maximum principle. Rooney et al.48 extended the geo-
metric AR identification method to higher dimensions by
extending the 2D subspace. In 1997, Nisoli et al.49 outlined a
method for identifying the AR for a two-phase reaction-
separation system; they applied the method to the production
and separation of dimethyl ether (DME) from methanol and
methyl tert-butyl ether (MTBE) from isobutene and methanol.
That same year, Smith and Malone50 outlined an application of
AR identification in the free-radical polymerization of poly-
(methyl methacrylate) (PMMA). Later, in 2002, Gadewar et al.51

analyzed networks of two-phase CSTRs that are surrogates for
reactive distillation units to find an AR for such networks.
Kauchali et al.52 used the earlier methods of Nisoli et al.67 to
identify candidate ARs for the water-gas shift (WGS) reaction,
which is a problem that also was previously studied by Omtveit
et al.53

More recently, the IDEAS conceptual framework has also
been applied in the construction of the AR for reactor networks.
Burri et al.54 first presented several IDEAS-based infinite linear
programming (ILP) formulations of the AR construction prob-
lem in 2002. That same year, Kauchali et al.55 independently
developed an IDEAS-like linear programming model for
extending candidate ARs. Manousiouthakis et al.1 then presented
properties of one of the aforementioned IDEAS ILPs, which
allowed construction of the true AR without explicit solution
of the ILP using a so-called “Shrink-Wrap” algorithm. Concur-
rent and independent work by Abraham and Feinberg56 proposed
a method of bounding hyperplanes to identify subsets of a
superset containing the AR that are guaranteed not to contain
the AR. More recently, Zhou and Manousiouthakis demonstrated
that variants of the Shrink-Wrap algorithm are applicable to
the AR construction for nonideal axial dispersion reactor
models57 and variable-density fluid reactor models,58 respec-
tively.

There is extensive work in the literature that addresses single-
batch reactor optimization and batch process scheduling. Rip-
pin59 gave a review of studies of individual batch units and their
optimization in 1983. That same year, he also wrote an overview
of general structures for batch process systems.60 He followed
up these reviews 10 years later with the current progress in the
field of engineering and design of batch processes.61 Reklaitis62

gave a review of progress and issues in computer-aided batch
process design in 1990. Levien63 wrote on the optimal design
of batch, discrete semi-batch, and continuous semi-batch reactor
units in his 1992 work. Terwiesch et al.64 surveyed industry
needs for batch processes and suggested both optimal control
methods for improvements and also further research problems
to be addressed. Yi and Reklaitis65 have performed work on
the optimal synthesis of batch storage networks for chemical
processes. Maravelias66 examined the problem of optimal
scheduling of single-stage and multistage batch processes using
a mixed-integer sequencing algorithm. Later work by Sung and
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Maravelias67 defines a “process attainable region” for production
planning and scheduling problems with limited equipment
capacity.

Application of IDEAS to Batch Reactor Network
Synthesis

The fundamental difference between batch and steady-state
reactor network synthesis problems is the time dependence of
the underlying batch reactor process. In a network context, this
time dependence immediately raises the issue of “causality”;
in a batch reactor network, a reactor cannot “feed” another
reactor unless its contents are unloaded before the other reactor’s
loading time. To examine causality in a straightforward manner,
we consider that batch reactor loading, unloading, and mixing
operations can only occur at prespecified discrete times,{t0, t1,
t2, ..., tn} and are instantaneous. For the remainder of this work
we will refer to the reactor inlet and outlet volumes (which are
equal, because of our assumption of constant density) as flow
rates; this is a slight misnomer, because each reactor’s inlet and
outlet are discrete (i.e., there is no temporal nature to the flow
into or out of a reactor), but the convention of calling them
flow rates makes the analogy between batch reactor networks
and other steady-state reactor networks clearer. The inlet and
outlet volumes of a batch reactor unit are extensive properties
that do not affect the units’ intensive properties, such as species
concentrations, temperature, pressure, etc.

The standard model for a batch reactor is outlined in almost
any reaction engineering textbook (see the work of Levenspiel,68

Froment and Bischoff,69 Schmidt,70 Fogler,71 Nauman,72 Raw-
lings,73 etc.). More recently, there have been more-complicated
batch reactor models proposed in the literature that account for
imperfect mixing and continuously fed batch operation;74

however, we will not specifically address these complications
in this work. To apply IDEAS to the batch reactor network
synthesis problem, we must first prove that the batch reactor
model is flow-invariant with respect to its intensive properties.
Second, we must prove that the operations of mixing and
splitting in the distribution network are linear. A more formal
mathematical method for showing the applicability of IDEAS
to a unit model has been previously outlined in Zhou et al.57

We define our IDEAS inlet-outlet information map (M) for
the batch reactor model as follows:

whereu is the reactor inlet information vector,y the reactor
outlet information vector, M the nonlinear reactor information
input-output map,Ch i(t) the concentration of speciesi in the
reactor at timet, Ri the rate of generation of speciesi (in units
of moles per volume per unit time),Ch (i) the concentration of
speciesi in the reactor inlet,C(i) the concentration of species
i in the reactor outlet,tin the reactor inlet time,tout the reactor

outlet time, λ the reactor technology flag,Fh the reactor
volumetric “feed” (reactor volume),F the reactor volumetric
“effluent” (constant density,F ) Fh), and N the number of
species considered.

The “reactor technology flag” (λ) is a convention that is used
to allow holding tanks to be part of the formulation. Ifλ ) 1,
the unit is a batch reactor with nonzeroRi defined by model
eqs 2-5. If λ ) 0, there is no reaction and the unit is a holding
tank that is defined by eq 6 with holding timetout - tin. For
IDEAS to be applied to this model, we must the identify vectors
u1, u2, y1, and y2 and information maps M1 and M2 (which,
together, comprise M) that satisfy the following properties:

We will define these vectors as follows:

Becausey1 ) u1, the map M1 is just the identity map. We
uniquely define the map M2 by assuming in this work that the
set of differential equations in eq 2 with initial conditions in eq
3 admits a solution and that the solution is unique. Sufficient
conditions on the properties of the rate vector for this to be
true can be found in theorem 2.4 of Khalil.75 Each of the outlet
concentrations can be found using the information inu2;
therefore, we can define the map M2 as follows:

Therefore, this batch reactor model satisfies the first necessary
property for the applicability of the IDEAS framework. The
second propertysthat the operations of mixing, splitting, and
recycle are linearsis obvious, given that the intensive properties
of the units are considered to be known.

Graphical Representation of Batch Reactor Networks

As an example, consider a simple batch reactor network that
consists of three reactors and two holding tanks. Reactor 1 is
fed at some initial time (we will call itt0) and runs until its
outlet timet1. At that time, the reactor 1 outlet is split into three
parts, which are fed into reactor 2, reactor 3, and holding tank
1, respectively. Reactor 2 operates fromt1 (which is the output
time of reactor 1) until timet2 and then its output enters holding
tank 2. Reactor 3 operates fromt1 until t3, at which time its
outlet is mixed with the contents of holding tanks 1 and 2 to
form the network outlet. This simple batch reactor network can
be visualized in a time-axis form, as shown in Figure 1.

We can also represent this same process flowsheet in an
OP/DN form, by rearranging the process network diagram such
that all the mixing and splitting operations are contained in the
distribution network (DN) and all unit operations (the three batch
reactors and two holding tanks) are contained in the operator
block (OP). This method of representing a flowsheet can be
used to best visualize the IDEAS formulation of the batch reactor
network problem. In the IDEAS formulation, all possible
reactors are considered in the formulation of the optimization
problem; therefore, instead of a diagram with three reactors,
there is an infinite number of batch reactors and holding tanks

u ) [Ch (1) Ch (2) ... Ch (N) tin tout λ Fh ] 98
M

y )
[C(1) C(2) ... C(N) F ] (1)

if λ ) 1:
dĈi(t)

dt
) Ri(Ĉ1(t), Ĉ2(t), ..., Ĉi(t) ..., ĈN(t))

∀i ) 1, ...,N (2)

if λ ) 1: Ch (i) ≡ Ĉi(t
in) ∀i ) 1, ...,N (3)

if λ ) 1: C(i) ≡ Ĉi(t
out) ∀i ) 1, ...,N (4)

if λ ) 1: Ĉi(t) g 0 ∀i ) 1, ...,N; ∀t ) [tin, tout] (5)

if λ ) 0: C(i) ) Ch (i) ∀i ) 1, ...,N (6)

M: u ) [u1

u2] f y ) [y1

y2] ) [M1(u2)‚u1

M2(u2) ] (7)

u1 ) [Fh] ) [F] ) y1 (8)

u2 ) [Ch (1) Ch (2) ... Ch (N) tin tout λ ] (9)

y2 ) [C(1) C(2) ... C(N) ] (10)

M2: u298
eqs 2-6

y2

C



included in OP as in Figure 2. The variables shown in Figure
2 are defined in Table 1.

Note that (i) the network outlet and all reactors in the network
may only be fed at their designated inlet time, (ii) the network
inlet time is arbitrarily designated ast0, and (iii) the network

outlet time istn. Thus,n designates the number of times that
the reactor/holding tank contents are allowed to mix (n ) 3 in
the example above). Also note that holding tanks are implicitly
included in this formulation as units in the OP block (no holding
occurs in the DN).

IDEAS ILP Formulation for Batch Reactor Network
Synthesis

The IDEAS optimization problem outlined below considers
every possible reactor and holding tank unit and all causally
feasible interconnections in the DN, thereby guaranteeing that
all possible batch reactor networks are included in the math-
ematical problem formulation. Without any loss of generality,
each unit’s input information vectoru2 is considered to be
known, and thus, using the information map M, its output
information vectory2 is also known. Knowledge of each unit’s
input and output information vectorsy2 andu2 will be shown
below to lead to an IDEAS formulation of the optimal batch
reactor network synthesis (RNS) problem that is an infinite linear
program (ILP). Before we can outline this IDEAS ILP, we first
define (infinite) sets of reactors that are organized by their inlet
and outlet times:

Using these sets as defined, the formulation for the batch reactor
network synthesis problem can be set up as follows:

subject to:

(1) Distribution Network Inlet Mass Balance (Splitting)

(2) OP Outlet Mass Balances (Splitting)

(3) Distribution Network Outlet Mass Balance (Mixing)

(4) Distribution Network Outlet Component Balances (Mix-
ing)

(5) OP Inlet Mass Balances (Mixing)

Figure 1. Batch reactor network flowsheet in time axis form.

Figure 2. IDEAS representation for batch reactor network problem.

Table 1. Definition of Symbols Used in Figure 2

variable definition

Fh * flow out of the DN/overall network
F* flow into the DN/overall network
Fhm

ij flow into themth reactor/holding tank,
operating from timeti until time tj

Fl
ij flow out of thelth reactor/holding tank,

operating from timeti until time tj
Fml

ijk flow from the lth reactor/holding tank, which
operates from timeti until time tj to the
mth reactor/holding tank which operates
from timetj until time tk

F*0k
m*

flow from DN inlet to themth reactor/
holding tank, operating from time t0 until time tk

F* l
in* flow to DN outlet from thelth reactor/

holding tank, operating from timeti until time tn
Ch m

ij property vector for the flowFhm
ij ) [Ch m

ij (1) Ch m
ij (2) ...Ch m

ij (N)]T

Cl
ij property vector for the flowFl

ij ) [Cl
ij(1) Cl

ij(2) ...Cl
ij(N)]T

Ch * property vector for the DN outlet) [Ch *(1) Ch *(2) ...Ch *(N)]T

C* property vector for the DN inlet) [C*(1) C*(2) ...C*(N)]T

Sij ≡ the set of all reactors and holding tanks
that operate from timeti to timetj (11)

minimizeV ) f(F*m*
0k, F * l

in, Fml
ijk, Fm

ij , Fh m
ij )

F * ) ∑
k)1

n

∑
m∈S0k

F*m*
0k ) ∑

k)1

n

∑
m∈S0k

Fh m
0k ) ∑

k)1

n

∑
m∈S0k

Fm
0k

Fm
ij ) ∑

k)2
k>j>i

n

∑
l∈Sjk

F lm
ijk

∀m∈ Sij; ∀i ) 0, ...,n - 2; ∀j ) 1, ...,n - 1 (i < j)

Fh * ) ∑
i)0

n-1

∑
l∈Sin

F * l
in* ) ∑

i)0

n-1

∑
l∈Sin

F l
in

Ch *Fh * ) ∑
i)0

n-1

∑
l∈Sin

Cl
inF * l

in* ) ∑
i)0

n-1

∑
l∈Sin

Cl
in F l

in

Fh m
jk ) ∑

i)0
i<j<k

n-2

∑
l∈Sij

Fml
ijk

∀m∈ Sjk; ∀j ) 1, ...,n - 1; ∀k ) 2, ...,n (j < k)
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(6) OP Component Balances (Mixing)

(7) Positivity Constraints

(8) Constant Density Assumption

(9) Batch Reactor/Holding Tank Model Map

The aforementioned optimization problem is an ILP (because
all unit inlet and outlet concentrations are known) as long as
the objective functionf is a linear function of the network’s
“flow” variables. The most commonly considered linear objec-
tive functions are maximization or minimization of one par-
ticular component’s DN outlet concentration, maximization of
selectivity or yield of a desired product, minimization of total
network volume, etc.

In practice, this ILP is not solved directly; this would be
impossible except for certain specific cases where a solution
could be found analytically in the limit. Instead, finite linear
programs (or LPs) are solved that give an approximation to the
ILP’s solution. As larger and larger LPs are solved, their
solutions more accurately approximate the solution of the ILP.
If we represent the number of units considered in our LP
approximation asU and the associated objective function value
for the LP asνU, then the infinite sequence

has been proven to be a non-increasing sequence of upper
bounds on the actual ILP objective function value (ν∞, or just
ν) and the sequence is guaranteed to converge toν (proof of
this is given in work by Justanieah,76 in collaboration with
Manousiouthakis).

Definition of Mixing Ratios

Now that we have defined our problem above, we will
introduce the concept of a mixing ratio,aml

ijk. A mixing ratio is
a ratio between 0 and 1 (inclusive) that defines the fraction of
a particular unit’s inlet stream (or the network outlet) coming

from another unit (or from the network inlet). Mixing ratios
satisfy the following equations:

Similar equations can be written for the OP inlet and network
outlet mixing ratios:

To identify the BAR, we then introduce the following defini-
tions:

Definition 1: Active unit - a unit (reactor or holding tank)
is active if its volume (outlet flow rate) is nonzero (strictly posi-
tive) in the feasible solution to the above optimization problem.

Definition 2: Inactive unit- a unit is inactive if its volume
is zero in the feasible solution to the above optimization
problem.

Without any loss of generality, mixing ratios from inactive
to active units can be set to zero, because flows to or from an
inactive unit are zero. In addition, the sum of all mixing ratios
that correspond to any unit inlet can be set to one. Indeed, for
mixing ratios that correspond to active unit inlets, this must be
the case, whereas for mixing ratios that correspond to inactive
units, this assumption is inconsequential. Furthermore, constraint
set 6 of the aforementioned IDEAS ILP is automatically satisfied
for an inactive unit, while it suggests that the inlet concentration
vector of an active unit fed at timetj belongs to the convex hull
of outlet concentration vectors of active units, which outlet at
time tj.

We also consider that these mixing ratios satisfy the following
five conditions; these equations (eqs 18-22) are automatically
satisfied for active units and are irrelevant to the IDEAS ILP
formulation for units with zero flow, based on constraint sets
3, 5, and 6 in the above formulation:

We can substitute in these mixing ratios (eqs 13-17 above)
into the feasible set of the IDEAS ILP to transform it to an

Ch m
jkFh m

jk ) ∑
i)0

i<j<k

n-2

∑
l∈Sjj

Cl
ijFml

ijk

∀m∈ Sjk; ∀j ) 1, ...,n - 1; ∀k ) 2, ...,n (j < k)

Fh m
ij g 0, Fm

ij g 0, Flm
ijk g 0 ∀m∈ Sij; ∀l ∈ Sjk;

∀i ) 0, ...,n - 2; ∀j ) 1, ...,n - 1;
∀k ) 2, ...,n (i < j < k)

F*m*
0k g 0, F * l

in* g 0 ∀i ) 0, ...,n - 1;

∀k ) 1, ...,n; ∀m∈ S0k; ∀l ∈ Sin

Fm
ij ) Fh m

ij , F * ) Fh * ∀m∈ Sij; ∀i ) 0, ...,n - 1;
∀j ) 1, ...,n

[Ch m
ij (1) Ch m

ij (2) ... Ch m
ij (N) ti tj λm

ij ] 98
M2

[Cm
ij (1) Cm

ij (2) ... Cm
ij (N) ] ∀m ) 1, ...,∞; ∀i ) 0, ...,n

if λm
ij ) 1: Batch Reactor,Ri(Ch m

ij (i)) * 0 ∀i ) 0, ...,N

if λm
ij ) 0: Holding Tank,Ri(Ch m

ij (i)) ) 0 ∀i ) 0, ...,N

{νU} U)1
∞ (12)

Fml
ijk ) Fh m

jkaml
ijk (13)

0 e aml
ijk e 1 (14)

∀m∈ Sjk; ∀l ∈ Sij; ∀i ) 0, ...,n - 2; ∀j ) 1, ...,
n - 1; ∀k ) 2, ...,n (i < j < k)

F*m*
0k ) Fhm

0ka*m*
0k ∀m∈ S0k; ∀k ) 1, ...,n (15)

F* l
in* ) Fh *a* l

in* ∀l ∈ Sin; ∀i ) 0, ...,n - 1 (16)

0 e a* l
in* e 1 ∀l ∈ Sin; ∀i ) 0, ...,n - 1 (17)

∑
i)0

i<j<k

n-2

∑
l∈Sij

aml
ijk ) 1

∀m∈ Sjk; ∀j ) 1, ...,n - 1; ∀k ) 2, ...,n (j < k) (18)

∑
i)0

n-1

∑
l∈Sin

a* l
in* ) 1 (19)

∑
i)0

i<j<k

n-2

∑
l∈Sij

Cl
ijaml

ijk - Ch m
jk ) 0

∀m∈ Sjk; ∀j ) 1, ...,n - 1; ∀k ) 2, ...,n (j < k) (20)

a*m*
0k ) 1 ∀m∈ S0k; ∀k ) 1, ...,n (21)

Ch m
0k ) C* ∀m∈ S0k; ∀k ) 1, ...,n (22)
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equivalent set. We also make use of the constant density
assumption to eliminate some of the redundant flow variables
and positivity constraints, reforming the set as follows:

We have omitted the batch reactor model equations, because it
is assumed that the infinite sequence of reactor inlet concentra-
tions and their respective lambda parameters are known for
a given reactor’s inlet and outlet time, and thus all outlet
concentrations are also known for each unit using the input-
output map M. Also, this formulation assumes the positivity of
the network inlet flow, because the problem would be trivial
otherwise. All the constraints in the aforementioned set are
linear, except for constraint set 2 (which corresponds to the OP
outlet splitting mass balances).

Finite Approximation to Feasible Set

To approximately identify the solution to the aforementioned
infinite problem, we discretize the concentration space with a
finite number of grid points. We then consider all units with an
inlet composition vector at one of the grid points, some at
starting timeti, and some at ending timetj. Let U be the finite
number of units that operate from each starting timeti to each
ending timetj; we will define new finite sets Gij with car-
dinality U, which approximate the infinite sets Sij. The vector
of all flows through each of these units in set Gij can be defined
as follows:

The previously mentioned constraint sets 1 and 2 then lead to
the matrix equation: whereA is a matrix of mixing ratios (shown

in Figure 3) andF is given as:

The sub-matricesAijk in A contain some combination of mixing
ratios and zeros. The matricesA*01, A*02, ...,A*0n contain only
ones (see eq 21).

Equation 24 (AF ) F) must be satisfied for any feasible
solution to the new finite problem, under the condition thatU
is large enough that at least one feasible solution exists.
Assuming that the units in each set Gij can be rearranged in the
proper manner, the column sums of this matrix must satisfy
eqs 18, 19, and 21 for the mixing ratios to be feasible for the
problem. Because these mixing ratios are between 0 and 1
inclusive, the matrixA is a non-negative square matrix with
column sum of 1. Bapat and Raghavan77 have shown that this
result proves that the spectral radius ofA is also 1, using the
Perron-Frobenius Theorem (Lemma 3.1.1). This implies that
there exists an eigenvector of the matrixA that isg0 and with
a corresponding eigenvalue of 1 (see theorem 1.7.3 in the work
of Bapat and Raghavan77). Therefore, if a matrixA of mixing
ratios can be found that is feasible for the original optimization
problem, one canalwaysfind a vectorF of feasible flows such
that AF ) F and F g 0. Using this result, the necessary
conditions for a point to be in the feasible set of the transformed
problem can be modified, with constraint sets 1, 2, and part of
set 7 eliminated, leaving

Figure 3. Matrix A from eq 24.
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Constraint 4 can be thought of as a specification on the outlet
concentration for the feasible solution. The set of mixing ratios
that satisfy the aforementioned constraints defines the AR for
the batch reactor network for a givenn; this feasible set is similar
to that obtained in Manousiouthakis et al.1 for steady-state RNS.
Because of the fact that there is only one network inlet, there
can only be one possible inlet concentration set for each reactor/
holding tank that is fed at timet0 (the feed concentration).
Similarly, all reactors fed at timet1 can only be fed by the
effluent of the reactor with inlet timet0 and outlet timet1 or
the holding tank with inlet timet0 and outlet timet1. Reactors
that feed at timet2 can be fed by some linear combination of
the effluents of reactors/holding tanks that outlet att2 and so
on. Generally, to ensure causality, a reactor or holding tank that
feeds atti can be fed only by the linear combination (mixing)
of effluents of reactors that outlet atti. The fact that the lower
triangle (excluding the first column) of matrixA (Figure 3) is
zero is a manifestation of the network’s causality, namely that
unit feeds at timeti can only be comprised of unit effluents at
time ti.

Shrink-Wrap BAR Construction Algorithm

An algorithm that is computationally similar to the “Shrink-
Wrap” algorithm (outlined in Manousiouthakis et al.1) can be
applied to the construction of a superset of the true BAR.
Because of the causal nature of the batch RNS problem, this
method can only be guaranteed to find a superset to the true
BAR. One of the steady-state RNS problem characteristics that
leads to the Shrink-Wrap steady-state AR construction method
is that any unit’s feed can be constructed, through mixing, as a
linear combination of the feed and reactor unit exits that belong
to the candidate steady-state AR. This was due to the fact that
all points in the candidate AR could be constructed indepen-
dently of each other (through mixing) without consideration of
“when” each point was generated. Because unit outlets in the
batch reactor network case cannot be used arbitrarily to
reconstruct other unit inlets (because of causality), the avail-
ability of any arbitrary unit exit in the candidate BAR to mix
and convexify the candidate BAR cannot be guaranteed unless
one knows when that unit operates. However, a Shrink-Wrap-
like algorithm can be used to identify increasingly accurate
approximations of a convex set that is guaranteed to contain
the BAR for all network operating timesn, although it is not
guaranteed to necessarily converge to the true BAR. This
algorithm removes extreme points (vertices) from an initial
superset by following the batch reactor trajectory backward (for
a given time,t1 - t0) and evaluating from where it started. If
the starting point of the vertex’s trajectory is not a point in the
interior of the superset, then no batch reactor can exist that
creates that point and the vertex is removed. The algorithm then
updates the set as points are removed. The method essentially

eliminates points in concentration space (identifying them as
“unattainable”) by explicitly calculating from where each point
must have come. An explicit description of this algorithm is
given as follows:

(1) Identify a suitable superset in concentration space for the
system in question, based on knowledge of its physical
constraints.

(2) Discretize the superset in all directions; the level of
accuracy of the method is improved as this discretization
becomes finer.

(3) Start from an extreme point of the current set and travel
backward along the path of the batch reactor in concentration
space fromt1 to t0. If this new point is in the current set, keep
it. If it is not, remove it from the set.

(4) Repeat step 3 until no more extreme points can be
removed; this region is guaranteed to contain the true BAR for
all network operating timesn and for a given reaction/holding
time, t1 - t0.

Breadth-First BAR Construction Algorithm

The aforementioned Shrink-Wrap-like algorithm is only
guaranteed to converge to a superset of the BAR. An alternative
algorithm that is guaranteed to converge to BARn (for any given
n) is given next. BARn is “grown” from time t0 out to timetn,
to respect the time hierarchy of the unit operations in a forward
dynamic programming-like manner.6 The algorithm is an
instance of a breadth-first search (see the work of Cormen et
al.78) with the network feed as the first point in concentration
space in the candidate BAR. At each stage of generation, the
points or nodes form a directed acyclic graph (DAG). Because
of this, it is easy to construct an actual network of operations
from the nodes of the graph. Each node of the DAG, other than
the first, can either have a single parent or multiple parents,
because of mixing. If the node is generated by a batch reactor
simulation, it has only one parent and that batch reactor
operation will be added to the resulting network of reactors to
create that node. If the node is generated by a linear combina-
tion of other nodes (mixing), it will have two or more parents.
At least one of the parent nodes is a newly generated vertex
from the previous time step, because we have assumed that
mixing is instantaneous. An outline of the algorithm is given
as follows:

(1) Start from the feed pointsthis is the BAR at timet0 or
BAR0.

(2) Travel along the path of the batch reactor in concentration
space fromt0 to t1. This will be the exit concentration vector of
the first batch reactor.

(3) Find the convex hull of all the points from the previous
time step and the points from the new time step to find the
BAR at that particular time. For the first time step, this will be
a line. This is BAR1.

(4) Discretize this line and travel from timet1 to timet2 along
the reactor trajectories starting at all discretized points on the
line BAR1 that are not part of BAR0.

(5) Form the convex hull of this new set and BAR1; this is
an approximation of BAR2.

(6) For every BARi, (a) generate the reactor trajectories from
time ti to time ti+1 for all points of BARi on an appropriately
defined grid that are not contained in BARi-1, and (b) form the
convex hull of this new set of points with the approximation of
BARi (this is an approximation of BARi+1).

(7) Repeat step 6 until timetn; this final convex hull is an
approximation of BARn, the true BAR attn.
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Case Study for Trambouze Kinetics

We will apply the two aforementioned algorithms to the
construction of the BAR for a case study that exhibits Tram-
bouze79 reaction kinetics (example 4 from his 1959 work), which
is a reaction scheme that is often studied in the literature:1,38,55

These are the same reaction kinetics and parameters as those
given in the work of Manousiouthakis et al.1 The rates of
generation for each species for this reaction pathway are

The batch reactor equations can be solved analytically, as
described in Appendix A. This makes this example ideal for
testing our candidate BARn identification algorithms, because
they can be compared analytically to the true BARn at each
time. For the purpose of creating BARns for this example, we
consider that the batch reactor time is 2 min, i.e., thatτ ) tn -
tn-1 ) tn-1 - tn-2 ) ... ) t1 - t0 ) 2 min.

For this batch reactor time, BAR0, BAR1, BAR2, and BAR3

are created analytically for this example as described by
Appendix B and BAR (BARn as n f ∞) is identified as

described by Appendices C and D. A table of points that define
these regions is given as Table 2. Table 3 lists the points and
curves that define BAR0, BAR1, BAR2, BAR3, and BAR, for
easy reference.

Shrink-Wrap BAR Construction Algorithm Results for
the Trambouze Example

Figure 4 shows increasingly accurate approximations of a
superset to the BAR for species A (x-axis) and species C (y-
axis), ranging from a 100× 100 grid size to a 10 000× 10 000
grid size. The identified BAR superset is only slightly smaller
than the steady-state AR found in the work of Manousiouthakis
et al.1 (shown in Figure 5) at the high end of they-axis
intersection of the AR (0.4666 for BAR, versus 0.4705 for
steady-state AR), but significantly smaller at the lower end of

Table 2. List of Points Used in Forming BAR0, BAR1, BAR2, BAR3,
and BAR

point first generated in C(A) C(C) formed by

A BAR2 0.2486 0.3204 mixing
B BAR2 0.1667 0.3493 map of point C
C BAR1 0.375 0.2466 map of point F
D BAR3 0.0625 0.3931 map of point B
E BAR3 0.2158 0.3495 mixing
F BAR0 1.0 0.0 network feed point
G BAR3 0.1064 0.3882 map of point A
H BAR 0.0 0.1851 see Appendix C
W BAR 0.05752 0.4568 map of point Z
Y BAR 0.0 0.4666 see Appendix D
Z BAR 0.1579 0.4156 see Appendix D

Table 3. List of Points and Relevant Equations for Curves That Define BAR0, BAR1, BAR2, BAR3, and BAR

region defined by relevant equations

BAR0 point F F ) (1.0,0.0)
BAR1 points C to F (linef1) f1(C1(A)) ) C1(C) ) 0.8(0.2- ln 2)(C1(A) - 1)

BAR2 points A to B (g1), B to C (line),
C to F (line), and F to A (line)

g1(C2(A)) ) C2(C) ) (0.2- ln 2)
8C2(A) - 3

4 - 4C2(A)
+ ln(x 5

4 - 4C2(A)) - 0.1

BAR3 points E to G (h1), G to D (h2),
D to C (line), C to F (line),
F to E (line)

h1(C3(A)) ) C3(C) ) 0.4264(15 - 40C3(A)

16 - 16C3(A)) + ln(x 5
4 - 4C3(A)) - 0.1

h2(C3(A)) ) C3(C) ) (0.2- ln 2)
12C3(A) - 2

3 - 8C3(A)
+ ln(x 5

3 - 8C3(A)) - 0.2

BAR points Z to W (j1), W to Y (j2),
Y to H (line), H to F (line),
F to Z (line)

j1(C(A)) ) C(C) ) (40C(A) - 15

16 - 16C(A)) CZ(C)

CZ(A) - 1
+ 0.5 ln( 5

4 - 4C(A)) - 0.1

j2(C(A)) ) C(C) ) (30C(A) - 5

6 - 16C(A)) CZ(C)

CZ(A) - 1
+ 0.5 ln( 5

3 - 8C(A)) - 0.2

A 98
k1

B (zeroth order,k1 ) 0.025 mol L-1 min-1) (26)

A 98
k2

C (first order,k2 ) 0.2 min-1) (27)

A 98
k3

D (second order,k3 ) 0.4 L mol-1 min-1) (28)

RA ) -k1 - k2CA - k3CA
2 (29)

RB ) k1 (30)

RC ) k2CA (31)

RD ) k3CA
2 (32)

Figure 4. Shrink-Wrap-like algorithm superset fortin - tout ) 2 min and
varying grid size.

Figure 5. Attainable region (AR) for steady-state networks.
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the y-axis intersection of the AR (0.1851 for BAR, versus 0.0
for steady-state AR). Fundamentally, the reason for this dis-
crepancy is the causality restriction that has been imposed on
the batch network; the point (0.0, 0.0) cannot be part of the
BAR because no batch reactor trajectory with a feed in BAR
can have this point as an exit. Similarly, the point (0.0, 0.1)
cannot be part of BAR for the same reason. Repeated application
of this argument within the aforementioned Shrink-Wrap-like
algorithm leads to the lower boundary of the BAR superset being
the line that goes through the network feed point (1.0, 0.0), a
batch reactor exit that lies on they-axis, and its corresponding
feed. Solving the batch reactor equations in Appendix A for a
reaction time of 2 min and an outlet concentration of A of 0.0
mol/L gives an inlet concentration of A of 0.0625 or1/16 mol/
L. Also using Appendix A, a batch reactor that feeds at (0.0625,
Ch (C)) will exit at (0, Ch (C) + 0.01157). The value ofCh (C)
for which the network feed point, aforementioned reactor inlet,
and reactor outlet points are all on the same line is:

Thus, the batch reactor exit is:

This is consistent with the Shrink-Wrap-like BAR code,
which identifies the lowest concentration attainable on theC(C)
axis as point H (0.0, 0.1851).

The BAR superset identified in Figure 4 is, in fact, the BAR
itself. As discussed in detail in Appendix C, if the point of BAR3

with the lowest value ofC(A) is considered to be a batch reactor
feed point, then this batch reactor’s exit is on they-axis. Mixing
this exit with the network feed results in a point withC(A) )
0.0625 that is below the point in BAR3 with the same value of
C(A). Repeated application of this batch reaction/mixing process
is shown in Appendix C to reach the lower boundary of the
previously identified BAR superset. A similar procedure is
outlined in Appendix D for the upper boundary of the superset,
thus establishing that the superset given in Figure 4 is the actual
BAR.

These results suggest that if species C were an unwanted
byproduct of this reaction set, choosing any network of batch
reactors with a reaction/holding time of 2.0 min would give
unacceptable results; a network of steady-state reactors (e.g., a
CSTR) could yield practically no generation of C and, thus,
would be superior to a network of batch reactors (except when
the reaction/holding time becomes very, very small.)

Breadth-First BAR Construction Algorithm Results for
the Trambouze Example

A “breadth-first” algorithm can be used to identify the BARn

for any givenn; we show the case forn ) 3 as depicted in
Figure 6 and an enlargement of the top of the same region as
Figure 7 to illustrate the convergence of the algorithm with an
increasing number of grid points.

This result matches very well with the analytical calculation
of BAR3 that is given in Appendix B.

Conclusions

We have outlined a method for automatically identifying the
attainable region for batch reactor networks for a given overall
network time, for any number of components, and for any

isothermal kinetic model. We have shown that a batch reactor
model can be incorporated into the IDEAS framework, which
is proven to identify the globally optimal network of batch
reactors.

We have demonstrated that a Shrink-Wrap-like algorithm can
be used to identify increasingly accurate approximations of a
superset of the batch attainable region (BAR). We have also
outlined a novel breadth-first algorithm that can be used to
identify the batch reactor network BARn. We have applied both
algorithms to a case study with Trambouze kinetics, and we
have demonstrated that the breadth-first algorithm accurately
identifies BARn (for n ) 3), whereas the Shrink-Wrap-like
algorithm accurately identifies not only a superset of BAR but
the actual BAR itself. Iterative procedures that demonstrate how
the BAR boundary, as identified by the Shrink-Wrap-like
algorithm, can be reached with causal (forward moving in time)
batch reaction and mixing operations are discussed in detail.

Appendix A: Solution of Batch Reactor Model for
Trambouze Kinetics

The considered Trambouze kinetics (k1 ) 0.025,k2 ) 0.2,
k3 ) 0.4) satisfy the relation (k2

2 - 4k1k3)1/2 ) 0. Therefore,
any batch reactor trajectory satisfies the following relations:

Figure 6. Breadth-first algorithm results for BAR3 with tin - tout ) 2 min
and varying grid size.

Figure 7. Enlargement of Figure 6.

C(A) )
(2 - k2τ)Ch (A) - Rk2τ

2k3τCh (A) + 2 + k2τ

C(C) ) Ch (C) + R[2 ln(1 + Rk3τ + k3τCh (A)) - k2τ]

Ch (C)
0.0625- 1

)
Ch (C) + 0.01157

-1
w

Ch (C) ) 15(0.01157)) 0.1736

C(C) ) 0.01157) 16(0.01157)) 0.1851
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whereτ is the reaction time of unit,R is defined as:

Ch (A) and C(A) respectively represent the inlet and outlet
concentrations of species A, andCh (C) andC(C) respectively
represent the inlet and outlet concentrations of species C.

For τ ) 2.0:

and:

Appendix B: Analytical Generation of BAR0, BAR1,
BAR2, and BAR3

BAR0 consists solely of the feed point: BAR0 ) {(1.0,0)}
) {(Ch 0(A),Ch 0(C))}.

BAR1 is the convex hull (which, in this case, is a line)
between two points: the feed and the exit of a batch reactor
with τ ) 2.0 and with the feed point as its inlet. Based on the
formulas given previously, the latter point is (C0(A), C0(C)) )
(0.375, ln(x2) - 0.1). We will call this point C. BAR1 can be
defined as

where:

and:

BAR2 is the convex hull of all batch reactor trajectories
starting from points in BAR1 and BAR1. It can be defined as
follows:

The convexification of this region will be a line from one
endpoint of the BAR1 line to either another endpoint of the new
set, or a point intermediate on that new set, depending on
whether the new set has an inflection point in the domain:

where:

Thus:

We must determine if there is a point in the domain ofg1 whose
tangent intersects the feed point:

This result shows that such a point exists; we will call this point
(0.2486, 0.3204) point A. The functiong1 is concave on the
domain; therefore, BAR2 is the area formed by the line from
the feed point to point A, the part of the batch reactor trajectory
from point A to point B (1/6, 0.5(ln 3) - 0.2), the line from
point B to point C (3/8, 0.5(ln 2)- 0.1), and the line from point
C to the feed point (see Figure B1).

BAR3 for this problem is comprised of all points attainable
from batch reactor trajectories that start on the boundary of
BAR2. We only need to consider extreme points, because the
Trambouze reaction vector is dependent only on the concentra-
tion of species A; any reactor inlet point on a given vertical
line that satisfies the relation:

will be mapped to a point (C(A), C(C)) that lies between the
points (C(A), Cl(C)) and (C(A), Cu(C)). Therefore one must
only consider the reactor trajectory that extends the region the
furthest for each point on theC(A) axis. Three separate segments
need to be mapped (i.e., travel along the batch reactor trajectories
for 2 min) to create BAR3: line AF, curve AB, and line BC.
Line CF does not need to be mapped again, because its map
was calculated previously and has already been considered in
BAR2. The convex hull of the region that is defined by these

R ≡ k2

2k3
) 1

4

C(A) )
Ch (A) - 0.0625

Ch (A) + 1.5
w Ch (A) )

1 + 24C(A)

16 - 16C(A)

C(C) ) 0.5 ln(0.8Ch (A) + 1.2)- 0.1

BAR1 ) {(C1(A), C1(C))

C1(C) ) f1(C1(A))

C1(A) ∈ [0.375, 1.0]}

f1(C1(A)) ≡ 0.8(0.2- ln 2)(C1(A) - 1)

C2(A) )
C1(A) - 0.0625

C1(A) + 1.5
) f2(C1(A)) w

C2(A) ∈ [0.1667, 0.375]

C2(C) ) C1(C) + 0.5 ln(0.8C1(A) + 1.2)- 0.1)
0.8(0.2- ln 2)(C1(A) - 1) + 0.5 ln(0.8C1(A) + 1.2)-

0.1) f3(C1(A))

C2(C) ) (0.2- ln 2)(8C2(A) - 3

4 - 4C2(A)) +

0.5 ln( 5
4 - 4C2(A)) - 0.1≡ g1(C2(A))

Figure B1. BAR2 generated analytically.

g1(38) ) ln(x2) - 0.1) 0.2466

g1(16) ) ln(x3) - 0.2) 0.3493

C2(C) ∈ [0.2466, 0.3493]

g1(C2(A)) - 0

C2(A) - 1
)

dg1(C2(A))

dC2(A)
w ln( 5

4 - 4C2(A)) )

1 - (ln 2) - 4(ln 2)C2(A)

C2(A) - 1
w C2(A) ) 0.2486

g1(0.2486)) (1.6(0.2486)+ 5(ln 2) - 2.6

4 - 4(0.2486) ) -

0.1) 0.3204

Ch l(C) e Ch (C) e Ch u(C)
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three mappings and BAR2 will give BAR3. Mapping line AF
gives:

Mapping curve AB gives

Mapping line BC gives

A plot of these three mappings is given as Figure B2.
To form BAR3, we must make the convex hull of these new

points with the points of BAR2. We first determine ifh1 has a
tangent that intersects the feed point:

We see thath1 does, in fact, intersect the feed point and is
concave, so there will be a convexification line from the feed
point to point E (0.2158, 0.3495). Becauseh2 is also concave
and its derivative is equal to the derivative ofh1 at their inter-
section, there will be no further convexifications at the top of
the region. The functionh3 is concave and the value ofC3(C)
for h3 at point B is greater than that of line CD at theC3(A) of
point B; therefore, there is a convexification line from point C
to point D (0.0625, 0.393147) to finish BAR3. This completes
the analytical generation of BAR3; it is the region formed by
the line from the feed to point E onh1, the functionh1 from
point E to point G (0.1064, 0.3882), the functionh2 from point

G to point D, the line from point D to point C, and line CF
(previously defined). The final graph of BAR3 appears almost
identical to the result from the breadth-first algorithm (Figure
6) and will not be reproduced.

Appendix C: Analytical Generation of the Bottom of
BAR

The point in BAR3 with the lowest value ofC(A) is (0.0625,
0.3931). This point maps to the point (0, 0.4047). The equation
for the line from this point to the feed point isC(C) ) 0.4047-
(1 - C(A)). The point on this new line atC(A) ) 0.0625 is
C(C) ) 0.3794. Mapping this new point back to the axis gives
the point (0, 0.3910). This procedure can be repeated iteratively
as follows; defineCi(C) as theith C(C) value in the sequence
and∆C(C) as the increase gained by mapping, whereC0(C) )
0.3931 and∆C(C) ) 0.01157. The first three points in the
sequence are then:

andCn(C), in the limit asn f ∞, can be expressed as:

This point maps forward along a reactor trajectory for 2.0 min
to point H (0, 0.1851), which is also the lowest point on the
C(C) axis obtained through the Shrink-Wrap-like algorithm.

Appendix D: Analytical Generation of the Top of BAR

As shown in the construction of BAR2 and BAR3, at high
values ofC(A) (C(A) > 0.375), the upper BARn boundary is a
straight line that is tangent to the curve generated when each
point of the upper BARn-1 boundary (which, again, is a straight
line for large values ofC(A)) is considered a feed to a batch
reactor with a reaction time ofτ ) 2.0 min. BAR2 has, as its
upper boundary, the line AF, which is tangent to the curve CAB
(at point A), which is generated when the points of the upper
boundary of BAR1 (line CF) are considered as feeds to batch
reactors withτ ) 2.0. Similarly, BAR3 has, as its upper
boundary, the line EF, which is tangent (at point E) to the curve
h1(C3(A)). This curve consists of points that are outlets of batch
reactors that have, as feeds, the points on the upper boundary
of BAR2 (line AF). This process will stop expanding BARi

upward (asi f ∞) only when the line ZF (that is, the upper
boundary of BARi) is tangent at point Z to the curve that results
from mapping the line ZF through the batch reactor map with
τ ) 2.0. To identify this point Z (Z) (CZ(A), CZ(C)), the
following conditions must hold:

(1) All points on the line ZF satisfy:

(2) The line ZF maps to the following curve:

Figure B2. New mappings needed to make BAR3.

C3(C) ) 0.4264(15 - 40C3(A)

16 - 16CC(A)) + 0.5 ln( 5
4 - 4C3(A)) -

0.1≡ h1(C3(A)), C3(A) ∈ [0.1064, 0.375]

C3(C) )
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+ ln x 5
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0.5 ln( 5
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dC3(A)
,
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(3) At C(A) ) CZ(A), C(C) ) CZ(C) and dC(C)/dC(A) is
given as:

where:

Taking the derivative of the functionj1 from condition 2 above
and evaluating the derivative atCZ(A) yields:

This point must be on the map of line ZF (condition 2), giving
the coordinates of point Z, (CZ(A),CZ(C)) ) (0.1579, 0.4156).
Because, by definition, line ZF and its map have the same slope
at point Z, there is no need to convexify the top of the BAR
near point Z. Next, we define point W (0.05752, 0.4568) as the
point to which point Z maps after a batch reaction time of 2.0
min; the portion of the mapping of line ZF between point Z
and point W will now be called curve ZW, as defined by the
function j1. The second derivative ofj1, with respect toC(A),
is negative between point Z and point W, so the curve ZW is
concave between point Z and point W. We can now map curve
ZW, through the batch reactor map withτ ) 2.0, until it reaches
the C(A) axis to complete the top of BAR:

The map hits theC(A) axis atC(C) ) 0.4666. We will call
this point Y (Y ) (0.0, 0.4666)) and refer to the portion of the
map of ZW forτ ) 2.0 min that remains in the physical region
(i.e., C(A) g 0) as curve WY. A plot of line ZF, curve ZW,
and curve WY is given as Figure D1. The derivatives of curve
ZW at point W and curve WY at point W are equal:

In addition, curve WY is concave between point Y and point
W, so no convexification line is necessary to fill in the region;
the top of the BAR is the line from the feed point F to point Z,
the functionj1 from point Z to point W, and the functionj2

from point W to point Y. This turns out to be approximated
extremely well by the Shrink-Wrap-like algorithm, which, in
this case, has successfully identified the BAR itself.
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