
AspenTech: VAPOR PRESSURES

Technical Memo No. XX-1

Subject: Vapor pressure interpolation error analysis
To: Ms. Sam K. Safobeen
Submitted by: Student 2
Date: May 11, 2010

Summary: I have compiled vapor pressure functions for the following four species: methane (CH4),
ethane (C2H6), ethylene (C2H4), and propane (C3H8). The functions accept temperature inputs in
Kelvin and return the vapor pressure of the species in atm. The error in each approximation was
calculated and presented in tabular form.

Findings: I am writing because I have successfully fit the provided vapor pressure data to separate
MATLAB functions. Each function accepts a temperature input, in Kelvin, and will output the
corresponding vapor pressure in atm. I have enclosed a sample MATLAB function file (Psat1.m)
for methane.

The approach used for all four functions was a variation of Newton’s forward divided-difference
form of the interpolatory polynomial. The algorithm generates a 4th-order polynomial using
the data points given from the experimental data closest to the temperature input. This method is
preferred over a more comprehensive polynomial because of how the polynomial generated. A large
order polynomial is overly concerned with fitting the given data points exactly than observing a
general trend in the data. Fitting only a handful of points to a polynomial stresses the importance
of the points around the input temperature rather than placing equal weight on all of the available
points.

The estimated error for this approach is computed by generating the 5th-order polynomial at the
same temperature and taking the difference between the 4th-order and 5th-order approximations.
Since the error varies between data points, I have listed the error bounds for each function below:

Species MATLAB Function Valid Temp (K) Maximum Error (atm)

methane Psat1.m 110 - 190 ±0.1
ethane Psat2.m 110 - 270 ±0.01

ethylene Psat3.m 110 - 270 ±0.009
propane Psat4.m 110 - 270 ±0.002

The maximum error is computed by comparing the estimated error to the error inherent in the
experimental data; whichever contributes the most significant source of error for each function is
the maximum possible error. The error beyond the temperature ranges cannot be bound in such
a manner. The data obtained from my vapor pressure functions, therefore, will be accurate up to
the respective maximum error listed within the range of valid temperatures.

Attached: Psat1.m

1

Listing 1: Psat1.m - Vapor Pressure as a function of Temperature for Methane

function [Psat] = Psat1(T)
%PSAT1 Obtain the partial pressure of methane (CH4) as a function of
%temperature in Kelvin.
% Psat = Psat1(T) From a given set of divided difference coefficients,
% the appropriate Newton forward divided−difference form of interpolatory
% polynomial is evaluated at the specified T and the appropriate partial
% pressure is returned.
%
% The pressure is given in atm. (1 atm = 1.01325 bar)
%
% Student 2
% 04/21/2010

T given = 110:10:190; % Temperature, K
Psat given = [0.884 ...

1.919 ...
3.681 ...
6.422 ...
10.41 ...
15.94 ...
23.81 ...
32.86 ...
45.20]; % Pressure, bar

[T pivot,index pivot] = min(abs(T given − T)); % find the closest T within
T given

if (index pivot == 1)
index pivot = 2;

elseif (index pivot ≥ 8)
index pivot = 7;

end

T sample = [T given(index pivot − 1) T given(index pivot) T given(index pivot
+1) T given(index pivot+2)];

Psat sample = [Psat given(index pivot − 1) Psat given(index pivot) Psat given(
index pivot+1) Psat given(index pivot+2)];

dim T = size(T sample);
dim P = size(Psat sample);

N = dim T(2); % could easily be dim P(2), both should be the same value

P temp = [Psat sample' zeros(N,N−1)]; % initialize P temp, first column values
are from given initial values

% It holds all the relevant divided differences
% calculations.

coeff = zeros(1,N); % initialize the relevant coeffs used in the polynomial
coeff(1) = Psat sample(1); % First coeff is not even touched by the algorithm

and must be set manually

for i = 2:N
for j = 2:i

P temp(i,j) = (P temp(i,j−1) − P temp(i−1,j−1))/(T sample(i)−T sample(
i−j+1));

if (i == j)
coeff(i) = P temp(i,j); % the needed coeffs only occur at the

diagonals of the triangular matrix,

2

% which is when i = j
end

end
end

Psat = 0; % initialize Psat

for i = length(coeff):−1:1
Psat = Psat*(T − T sample(i)) + coeff(i); % very concise'd version which

deals with all of the polynomial terms of divided differences through
backwards nested loop

end

Psat = Psat / 1.01325; % conversion from bar to atm

3

AspenTech: Flash Calculator

EPCflash.m - User Manual

EPCflash.m is a powerful flash drum calculator in MATLAB. This user manual will walk you

through an example flash calculation to get you up and running as soon as possible for your flash

calculation needs.

Before we begin, please make sure the following files are in your current directory:

� Psat1.m - This function calculates the vapor pressure for methane (CH4)

� Psat2.m - Same as above, for ethane (C2H6)

� Psat3.m - Same as above, for ethylene (C2H4)

� Psat4.m - Same as above, for propane (C3H8)

� flash1.m - Performs a flash calculation given (z,F,T,P)

� flash2.m - Performs a flash calculation given (z,F,T,V)

� flash3.m - Performs a flash calculation given (z,F,T,y1)

� EPCflash.m - Integrates all of the above, the primary function to use. Input (z,F,T,[P V
y1]).

To get started, enter the following in the command window:

>> z = [0.2 0.4 0.3 0.1];

z is a vector of mole fractions corresponding to the input feed stream. It is important that z is

always a vector of length four, must always contain values between 0 and 1, and must always

add up to 1. In this example, the mole fraction of our input feed is 0.2 methane, 0.4 ethane, 0.3

ethylene, and 0.1 propane.

>> F = 200;
>> T = 200;
>> P = 3;

Here we have set the input feed stream (F) to be 200; this stream is in units of mol per unit time.

The operating temperature, T, is set to 200 K, and the pressure, P, is set to 3 atm. We are now

ready to perform our first flash calculation. This is done by entering the following in the command

window:

>> [x y L V P] = EPCflash(z,F,T,[P 0 0]);

4

The last parameter, [P V y1], indicates which method will be called to perform the flash calculation:

if P is provided, then flash1.m will be invoked, if V is provided, then flash2.m will be used, and if

y1 is provided, then flash3.m will be called. Only one of the three possible variables should be used

when using this program; the other two should be marked as 0. The flash calculation should be run

correctly and no error messages should be displayed. After this, you should have these following

variables with the corresponding values:

x =
0.0141 0.4943 0.2249 0.2666

y =
0.2922 0.3532 0.3373 0.0173

L =
66.3212

V =
133.6788

P =
3

The way flash1.m works is by substituting all of the known data into each vapor mole fraction of

y and using a bisection method to solve for L, the liquid molar flow rate that satisfies the given

conditions. The extensive mathematical details will not be discussed here. x is the liquid mole

fraction of the feed, and V is the vapor molar flow rate of the exit stream. As we can see here, of

the 200 mol per unit time initial feed, 66.3212 exits as a liquid under 200 K and 3 atm, which has

a composition of 1.41% methane, 49.43% ethane, 22.49% ethylene, and 26.66% propane.

Let us perform another flash calculation using a different value for the last parameter. Enter clear

in the command window and input the same values for z, F, and T from before. Let us find the

conditions for an equimolar flow of both liquid and vapor output streams at 200 K by entering the

following:

>> V = 100;
>> [x y L V P] = EPCflash(z,F,T,[0 V 0]);
x =

0.0228 0.5117 0.2749 0.1903
y =

0.3772 0.2883 0.3251 0.0097
L =

100
V =

100
P =

3.8048

This method uses flash2.m to run the flash calculation, which does so by obtaining the pressure,

5

P, in a similar manner as flash1.m obtains L, and then uses Runge-Kutta order 4 for systems of

initial value problems. This is made possible through the method of false transients, in which the

vapor fraction y is assumed to vary with time, and the solution to this problem would be when y

reaches steady state. From this example we can see that at 200 K and 3.8048 atm, we will obtain

an equimolar liquid and vapor flow.

Suppose we want to set a fixed vapor mole fraction for methane. We will use the same z and F,

but let us set T = 150 this time just so we are not performing flash calculations at the same

temperature every time. Input a value for y1 into the last input parameter as follows:

>> y1 = 0.4;
>> [x y L V P] = EPCflash(z,F,T,[0 0 y1]);
x =

0.0079 0.5406 0.2580 0.1936
y =

0.4000 0.2536 0.3438 0.0026
L =
102.0200

V =
97.9800

P =
0.2034

This method uses flash3.m to calculate the remaining values, which is done by using Newton’s

method for solving initial value problems. At every iteration, the pressure is recomputed until

everything converges. As you can see, in order to obtain 40% methane in the vapor exit stream at

150 K, it will be necessary to lower the pressure to 0.2034 atm.

Of the possible final inputs, vapor molar flow rate is easily bounded by the input feed (since the

output rate cannot exceed the input rate) and y1 must lie between 0 and 1. Pressure is difficult to

bound and arbitrary selections of temperature and pressure will easily lead to poor flash1.m output

values. The following table presents general guidelines for valid temperature and pressure ranges:

6

Temperature (K) Pressures (atm)

120 0.01 - 0.03
140 0.04 - 0.06
160 0.13 - 0.64
180 0.4 - 3
200 1.4 - 9
220 3.6 - 22
240 8.8 - 42
260 17 - 86
280 28 - 140
300 45 - 210

This data was compiled through trial and error using an input stream composition of 25% methane,

25% ethane, 25% ethylene, and 25% propane. The pressure ranges will also vary depending on the

input stream composition; this table only serves as a guideline for what will actually be computable

by the flash programs. Even so, at most of the extreme conditions, although values will be properly

generated, most species will be below their boiling points or above their critical temperature,

and thus the output will not be accurate under these circumstances. Essentially, if the operating

pressure lies well within the guidelines provided, the more likely that the flash calculations will

approximate realistic scenarios.

7

Error Messages

When an error occurs, almost all return values will be -1 to denote that no flash calculation

took place.

z related errors (From flash1.m,flash2.m, and flash3.m):

Error: Incorrect number of mole fractions − please provide the mole fractions in
the following format:

>> z = [0.2 0.4 0.3 0.1];
where 0.2 corresponds to mole fraction of inlet methane,
0.4 corresponds to inlet ethane,
0.3 corresponds to inlet ethylene,
and 0.1 corresponds to inlet propane.

Error: Mole fractions must be within the range of 0 and 1. Please check the mole
fractions to see if they are valid and try again.

Error: Mole fractions provided do not add up to 1. Please check the mole fractions
to see if they are valid and try again.

These are caused by z inputs either not having 4 elements, not consisting of real fractions, and not

totaling up to 1.

F related errors (From flash1.m,flash2.m, and flash3.m):

Error: Feed molar flow rate must be positive. Please check to see if the molar flow
rate (F) is greater than 0.

This is caused by F being negative or equal to 0. P related errors (From flash1.m):

Error: Operating pressure must be positive. Please check to see if the pressure (P)
is greater than 0.

This is caused by an input pressure P less than or equal to 0.

V related errors (From flash2.m):

Error: Vapor flow rate cannot exceed that of the input feed molar flow rate. Please
make sure V is less than F.

Error: Vapor flow rate cannot be negative. Please make sure V is a positive number
less than the molar flow rate (F).

This is caused by an input vapor molar flow rate V greater than F. The vapor flow rate must also

be greater than or equal to 0.

y1 related errors (From flash3.m):

Error: Desired mole fraction of methane must be between 0 and 1. Please check to
see if this value (y1) is within this range.

8

This is caused by the desired vapor mole fraction of methane y1 not within [0,1].

var related errors (From EPCflash.m):

Error: Not enough inputs in var. Please input a vector [P V y1] of which only one
value is defined whereas the others are 0.

Error: No valid var parameter defined. Please input a vector [P V y1] for in which
only one out of the three are defined.

Either var was not input as a vector of correct length or no value of P, V, or y1 was detected to

be usable. The format is strict in order for the program to work.

Other messages (From EPCflash.m):

Warning: x values do not add up to 1; These values are most likely unusable. Please
revise input conditions for better results.

Warning: y values do not add up to 1; These values are most likely unusable. Please
revise input conditions for better results.

Warning: Negative x values detected; These values are most likely unusable. Please
revise input conditions for better results.

Warning: Negative x values detected; These values are most likely unusable. Please
revise input conditions for better results.

These are warnings and not errors because the flash calculations may have taken place and values

may be usable to some degree. These warnings will almost always accompany every error message

to let the user know that the mole fractions most likely do not make sense and should not be used

or interpreted to have any meaning. In certain cases will the x and y values be usable; although

a leniency of their sums adding up to 0.995 to 1.005 is allotted, anything beyond those bounds

trigger the first type of warning message.

9

AspenTech - EPCQcalc

Executive Summary
Heat and Flash Drum Calculator

Problem: When operating a flash drum, there are many parameters which must be taken into
account. Given a handful of operating conditions, it is possible to derive and approximate the
behavior of such a system. This process is tedious and time consuming, and the derivation is not
easily obtained analytically. Furthermore, based on what the given conditions are, the approach
to solving the rest of the flash drum conditions will vary as well. The task is not an easy one, and
not all operating conditions are guaranteed to be solvable.

Solution: EPCQcalc is a numerical approach to solving flash drum simulations. The function sim-
ulates feeding a mixture into a flash drum at a known temperature and pressure and ’flashing’ it to
a specified temperature and either pressure, volume, or vapor mole fraction. This process requires
heat to either be added or released from the system, depending on whether the feed temperature
is increased or decreased respectively. A pressure drop will also require heat to be added to the
system and heat to be removed for a pressure increase.

EPCQcalc calls upon a sister function, EPCflash, which tackles on the following flash tank
simulations:

� Feed rate composition, molar flow rate, temperature, and pressure given
With this information, either the liquid or vapor exit flow rates can be expressed as a single
non-linear equation, solvable by any root solving algorithm. The flash program uses bisection
method in this case. If the algorithm converges, a liquid molar flow rate is found and thus, the
vapor flow rate can be found as well. From here, both vapor and liquid stream compositions
can be found.

� Feed rate composition, molar flow rate, temperature, and vapor molar flow rate
given
The pressure of this system can be solved for using the same method as the previous case,
through a root solving algorithm. Bisection method is once again used for this parameter.
With this, a system of non-linear equations can be solved for by treating them as initial value
problems. This contrived system of initial value problems can be solved for by treating one
of the mole fractions as changing with time and finding when such a change equals 0, also
known as the method of false transients. When this system converges, the vapor mole fraction
composition is complete and is used to calculate the missing liquid mole fraction.

� Feed rate composition, molar flow rate, temperature, and desired vapor mole
fraction of light key given
Using the desired vapor mole fraction of the species with the lowest boiling point, a system
of non-linear equations are established. This system is composed of the other unknown vapor
mole fractions, and either vapor molar flow rate or liquid molar flow rate; one can be expressed
in terms of the other. The flash program uses Newton’s method for solving non-linear systems,
which involves taking the Jacobian of the set of functions and solving for each unknown until
convergence is reached. The liquid composition and the missing molar flow rate are then
subsequently calculated.

10

No built-in MATLAB solver functions are required to use this program; all algorithms are im-
plemented using MATLAB commands. The only potentially ’special’ command used is the inline

function, which creates an inline object out of a string.

Future Changes

The program is fixed to run for a set number of species, currently 4, and the species them-
selves are also fixed (methane, ethane, ethylene, and propane). The next step to improving this
program would be to encorporate a database of vapor pressure values and their corresponding re-
lationship with temperature. This would allow for user specification in selecting which species to
be used in the flash operation, as well as allow the number of active species be specified by the user.

Temperatures below the boiling point and above the critical temperature have significant impact
on individual species. These substances would be at either pure liquid or pure vapor compositions;
such effects are not taken into account in this program. This is because the documented boiling
point and critical temperatures only apply at 1 atm–the dew and bubble points for a species changes
with pressure as well. Implementing some kind of algorithm which calculates each active species’
boiling point and critical temperature at the operating pressures and factoring them into the stream
composition would also be the next step towards improving the validity of the program’s results.

11

